論文の概要: Towards a Harms Taxonomy of AI Likeness Generation
- arxiv url: http://arxiv.org/abs/2407.12030v1
- Date: Sat, 29 Jun 2024 16:00:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 11:20:27.679609
- Title: Towards a Harms Taxonomy of AI Likeness Generation
- Title(参考訳): AIライクネス生成のハームス分類を目指して
- Authors: Ben Bariach, Bernie Hogan, Keegan McBride,
- Abstract要約: 生成的人工知能モデルは、十分な数の人の画像に基づいて訓練されると、識別された特徴をフォトリアリスティックな方法で再現することができる。
本稿では,創発的類似性を取り巻く哲学的・政策的問題について考察する。
本稿では、関連する文献の総合的メタ分析から得られた、発生した類似性に関連する害の分類について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative artificial intelligence models, when trained on a sufficient number of a person's images, can replicate their identifying features in a photorealistic manner. We refer to this process as 'likeness generation'. Likeness-featuring synthetic outputs often present a person's likeness without their control or consent, and may lead to harmful consequences. This paper explores philosophical and policy issues surrounding generated likeness. It begins by offering a conceptual framework for understanding likeness generation by examining the novel capabilities introduced by generative systems. The paper then establishes a definition of likeness by tracing its historical development in legal literature. Building on this foundation, we present a taxonomy of harms associated with generated likeness, derived from a comprehensive meta-analysis of relevant literature. This taxonomy categorises harms into seven distinct groups, unified by shared characteristics. Utilising this taxonomy, we raise various considerations that need to be addressed for the deployment of appropriate mitigations. Given the multitude of stakeholders involved in both the creation and distribution of likeness, we introduce concepts such as indexical sufficiency, a distinction between generation and distribution, and harms as having a context-specific nature. This work aims to serve industry, policymakers, and future academic researchers in their efforts to address the societal challenges posed by likeness generation.
- Abstract(参考訳): 生成的人工知能モデルは、十分な数の人の画像に基づいて訓練されると、識別された特徴をフォトリアリスティックな方法で再現することができる。
この過程を「類似生成」と呼ぶ。
類似度を特徴とする合成出力は、制御や同意なしに人の類似度を示すことが多く、有害な結果をもたらす可能性がある。
本稿では,創発的類似性を取り巻く哲学的・政策的問題について考察する。
それは、生成システムによって導入された新しい能力を調べることによって、類似性の生成を理解するための概念的なフレームワークを提供することから始まる。
この論文は、法文学における歴史的発展を辿ることで、類似性の定義を確立している。
本研究は,本研究の基盤として,関連文献の包括的メタ分析から得られた,生成した類似性に関連する害の分類を提示する。
この分類分類は、7つの異なるグループに分類され、共通の特徴によって統一される。
この分類を利用して、適切な軽減策の展開に対処する必要がある様々な考察を提起する。
類似性の創造と流通の両方に関わる利害関係者の多さを考えると、索引的充足、生成と分布の区別、文脈固有の性質を持つものとしての害などの概念を導入する。
この研究は、産業、政策立案者、そして将来の学術研究者が、類似性の発生によって引き起こされる社会的課題に対処する努力に役立てることを目的としている。
関連論文リスト
- On the Fairness, Diversity and Reliability of Text-to-Image Generative Models [49.60774626839712]
マルチモーダル生成モデルは 彼らの公正さ、信頼性、そして誤用の可能性について 批判的な議論を呼んだ
組込み空間における摂動に対する応答を通じてモデルの信頼性を評価するための評価フレームワークを提案する。
本手法は, 信頼できない, バイアス注入されたモデルを検出し, バイアス前駆体の検索を行うための基礎となる。
論文 参考訳(メタデータ) (2024-11-21T09:46:55Z) - Generative midtended cognition and Artificial Intelligence. Thinging with thinging things [0.0]
生成中間認知(generative Midtended cognition)は、生成AIと人間の認知の統合を探求する。
生成的(generative)"という言葉は、AIが構造的出力を反復的に生成する能力を反映し、"再帰的(midtended)"はプロセスの潜在的なハイブリッド(人間-AI)の性質をキャプチャする。
論文 参考訳(メタデータ) (2024-11-11T09:14:27Z) - Concept Arithmetics for Circumventing Concept Inhibition in Diffusion Models [58.065255696601604]
拡散モデルの合成特性を使い、単一の画像生成において複数のプロンプトを利用することができる。
本論では, 画像生成の可能なすべてのアプローチを, 相手が適用可能な拡散モデルで検討することが重要であると論じる。
論文 参考訳(メタデータ) (2024-04-21T16:35:16Z) - Mapping the Ethics of Generative AI: A Comprehensive Scoping Review [0.0]
我々は、特に大きな言語モデルやテキスト・ツー・イメージモデルを含む、生成的人工知能の倫理に関するスコーピングレビューを行う。
本分析では,19のトピック領域において,378の規範的問題を分類し,文献の有病率に応じて分類する。
この研究は、公正性、安全、有害なコンテンツ、幻覚、プライバシー、相互作用リスク、セキュリティ、アライメント、社会的影響などに関する倫理的な議論を、学者、実践者、あるいは政策立案者に包括的な概要を提供する。
論文 参考訳(メタデータ) (2024-02-13T09:38:17Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - The Creative Frontier of Generative AI: Managing the Novelty-Usefulness
Tradeoff [0.4873362301533825]
生成人工知能(AI)システムにおける新規性と有用性の最適バランスについて検討する。
どちらの側面も過度に強調すると、幻覚や暗記のような限界に繋がる。
論文 参考訳(メタデータ) (2023-06-06T11:44:57Z) - Language Generation Models Can Cause Harm: So What Can We Do About It?
An Actionable Survey [50.58063811745676]
この研究は、言語生成モデルから潜在的脅威や社会的害に対処するための実践的な方法の調査を提供する。
言語生成者のさまざまなリスク・ハームを検知・改善するための戦略の構造化された概要を提示するために、言語モデルリスクのいくつかの先行研究を取り上げる。
論文 参考訳(メタデータ) (2022-10-14T10:43:39Z) - CausalCity: Complex Simulations with Agency for Causal Discovery and
Reasoning [68.74447489372037]
本稿では,因果探索と反事実推論のためのアルゴリズムの開発を目的とした,高忠実度シミュレーション環境を提案する。
私たちの作業の中核となるコンポーネントは、複雑なシナリオを定義して作成することが簡単になるような、テキストの緊急性を導入することです。
我々は3つの最先端の手法による実験を行い、ベースラインを作成し、この環境の可利用性を強調する。
論文 参考訳(メタデータ) (2021-06-25T00:21:41Z) - Is Disentanglement all you need? Comparing Concept-based &
Disentanglement Approaches [24.786152654589067]
概念に基づく説明と非絡み合いのアプローチの概要を述べる。
両クラスからの最先端のアプローチは、データ非効率、分類/回帰タスクの特定の性質に敏感、あるいは採用した概念表現に敏感であることを示す。
論文 参考訳(メタデータ) (2021-04-14T15:06:34Z) - Lexically-constrained Text Generation through Commonsense Knowledge
Extraction and Injection [62.071938098215085]
我々は、ある入力概念のセットに対して妥当な文を生成することを目的としているcommongenベンチマークに焦点を当てる。
生成したテキストの意味的正しさを高めるための戦略を提案する。
論文 参考訳(メタデータ) (2020-12-19T23:23:40Z) - On the Binding Problem in Artificial Neural Networks [12.04468744445707]
この欠点の根底にある原因は、動的かつ柔軟に情報を結合できないことである。
非構造化感覚入力から有意義な実体を形成するための統一フレームワークを提案する。
我々は,人間レベルの一般化を実現する上で,AIに対する構成的アプローチが基本的重要性であると考えている。
論文 参考訳(メタデータ) (2020-12-09T18:02:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。