論文の概要: Temporal receptive field in dynamic graph learning: A comprehensive analysis
- arxiv url: http://arxiv.org/abs/2407.12370v2
- Date: Fri, 19 Jul 2024 07:27:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 11:40:33.925187
- Title: Temporal receptive field in dynamic graph learning: A comprehensive analysis
- Title(参考訳): 動的グラフ学習における時間受容場:包括的解析
- Authors: Yannis Karmim, Leshanshui Yang, Raphaël Fournier S'Niehotta, Clément Chatelain, Sébastien Adam, Nicolas Thome,
- Abstract要約: 本稿では,動的グラフ学習における時間受容領域の包括的解析について述べる。
その結果,適切な時間的受容場を選択すれば,モデルの性能が大幅に向上することが示された。
一部のモデルでは、過度に大きなウィンドウがノイズを発生させ、精度を低下させる。
- 参考スコア(独自算出の注目度): 15.161255747900968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic link prediction is a critical task in the analysis of evolving networks, with applications ranging from recommender systems to economic exchanges. However, the concept of the temporal receptive field, which refers to the temporal context that models use for making predictions, has been largely overlooked and insufficiently analyzed in existing research. In this study, we present a comprehensive analysis of the temporal receptive field in dynamic graph learning. By examining multiple datasets and models, we formalize the role of temporal receptive field and highlight their crucial influence on predictive accuracy. Our results demonstrate that appropriately chosen temporal receptive field can significantly enhance model performance, while for some models, overly large windows may introduce noise and reduce accuracy. We conduct extensive benchmarking to validate our findings, ensuring that all experiments are fully reproducible. Code is available at https://github.com/ykrmm/BenchmarkTW .
- Abstract(参考訳): 動的リンク予測は、レコメンデーターシステムから経済交換まで、様々な用途で進化するネットワークの分析において重要な課題である。
しかし、時間受容場の概念は、モデルが予測を行う際に使用する時間的文脈を指しており、既存の研究ではほとんど見過ごされ、不十分に分析されてきた。
本研究では,動的グラフ学習における時間受容領域の包括的解析について述べる。
複数のデータセットやモデルを調べることで、時間的受容領域の役割を形式化し、予測精度に重要な影響を浮き彫りにする。
その結果、適切な時間的受容場がモデル性能を大幅に向上させることができる一方で、いくつかのモデルでは、過度に大きなウィンドウがノイズを発生させ、精度を低下させる可能性があることが示された。
すべての実験が完全に再現可能であることを保証するために、広範なベンチマークを実施しています。
コードはhttps://github.com/ykrmm/BenchmarkTWで入手できる。
関連論文リスト
- Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
我々は,関係学習をハイパーグラフリカバリとして形式化する数学的モデルを導入し,基礎モデル(FM)の事前学習について検討する。
我々のフレームワークでは、世界はハイパーグラフとして表現され、データはハイパーエッジからランダムなサンプルとして抽象化される。我々は、このハイパーグラフを復元するための事前学習モデル(PTM)の有効性を理論的に検証し、ミニマックスに近い最適スタイルでデータ効率を解析する。
論文 参考訳(メタデータ) (2024-06-17T06:20:39Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
時系列およびS時間データにおける拡散モデルの使用について概観し、それらをモデル、タスクタイプ、データモダリティ、実用的なアプリケーションドメインで分類する。
我々は拡散モデルを無条件型と条件付き型に分類し、時系列とS時間データを別々に議論する。
本調査は,医療,レコメンデーション,気候,エネルギー,オーディオ,交通など,さまざまな分野の応用を幅広くカバーしている。
論文 参考訳(メタデータ) (2024-04-29T17:19:40Z) - Interpretable Short-Term Load Forecasting via Multi-Scale Temporal
Decomposition [3.080999981940039]
本稿では,ニューラルネットワークの線形結合を学習し,それぞれが入力時間の特徴に付随する解釈可能なディープラーニング手法を提案する。
ケーススタディはベルギーの中央グリッド負荷データセット上で実施されており、提案モデルは頻繁に適用されるベースラインモデルよりも精度がよいことを示した。
論文 参考訳(メタデータ) (2024-02-18T17:55:59Z) - Exploring Time Granularity on Temporal Graphs for Dynamic Link
Prediction in Real-world Networks [0.48346848229502226]
動的グラフニューラルネットワーク(DGNN)は、動的グラフ構造化データを処理するための主要なアプローチである。
本稿では,DGNNを訓練する際の時間粒度が動的グラフに与える影響について,広範な実験を通して検討する。
論文 参考訳(メタデータ) (2023-11-21T00:34:53Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph
Learning [114.72818205974285]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - A Survey on Deep Learning based Time Series Analysis with Frequency
Transformation [74.3919960186696]
周波数変換(FT)は、時系列解析における最先端の精度と効率を高めるために、ディープラーニングモデルにますます取り入れられている。
この新興分野における注目の高まりと研究の高まりにもかかわらず、現在、FTを用いたディープラーニングベースの時系列モデルの体系的レビューと詳細な分析が欠如している。
本稿では,FTを用いた深層学習に基づく時系列解析における最近の研究成果を体系的に研究し,要約する総合的なレビューを紹介する。
論文 参考訳(メタデータ) (2023-02-04T14:33:07Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
実世界のプロセスの相関は時間的であり、それらによって生成されたデータは空間的および時間的進化の両方を示す。
時系列モデルが数値予測の代替となる。
本研究では,分解時間予測モデルにより計算コストを低減し,精度を向上することを示した。
論文 参考訳(メタデータ) (2022-09-29T13:47:02Z) - Temporal Domain Generalization with Drift-Aware Dynamic Neural Network [12.483886657900525]
ドリフト対応動的ニューラルネットワーク(DRAIN)フレームワークを用いた時間領域一般化を提案する。
具体的には、この問題を、データとモデル力学の関係を共同でモデル化するベイズ的枠組みに定式化する。
モデルパラメータとデータ分布の時間的ドリフトをキャプチャし、将来のデータなしで将来モデルを予測することができる。
論文 参考訳(メタデータ) (2022-05-21T20:01:31Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
まず,CNNに基づく行動モデルにより捉えたフレーム間の時間的関係を定量化する手法を提案する。
次に、時間的モデリングがどのように影響を受けるかをよりよく理解するために、包括的な実験と詳細な分析を行います。
論文 参考訳(メタデータ) (2022-04-25T19:06:48Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。