論文の概要: ChipXplore: Natural Language Exploration of Hardware Designs and Libraries
- arxiv url: http://arxiv.org/abs/2407.12749v3
- Date: Sun, 29 Jun 2025 18:37:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 15:08:38.365995
- Title: ChipXplore: Natural Language Exploration of Hardware Designs and Libraries
- Title(参考訳): ChipXplore: ハードウェア設計とライブラリの自然言語探索
- Authors: Manar Abdelatty, Jacob Rosenstein, Sherief Reda,
- Abstract要約: ChipXploreは、エンジニアが自然言語を使って設計やPDKをクエリできる、大規模な言語モデルを利用したマルチエージェント協調フレームワークである。
ChipXploreは97.39%の精度を実現し、検索を5.63倍速くすることで生産性を向上させる。
ChipXploreのカスタマイズワークフローはジェネリックと比較して、複数のデータベース上の推論と計画のオーケストレーションが可能で、精度は29.78%向上している。
- 参考スコア(独自算出の注目度): 1.1704154007740835
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hardware design workflows rely on Process Design Kits (PDKs) from different fabrication nodes, each containing standard cell libraries optimized for speed, power, or density. Engineers typically navigate between the design and target PDK to make informed decisions, such as selecting gates for area optimization or enhancing the speed of the critical path. However, this process is often manual, time-consuming, and prone to errors. To address this, we present ChipXplore, a multi-agent collaborative framework powered by large language models that enables engineers to query hardware designs and PDKs using natural language. By exploiting the structured nature of PDK and hardware design data, ChipXplore retrieves relevant information through text-to-SQL and text-to-Cypher customized workflows. The framework achieves an execution accuracy of 97.39\% in complex natural language queries and improves productivity by making retrieval 5.63x faster while reducing errors by 5.25x in user studies. Compared to generic workflows, ChipXplore's customized workflow is capable of orchestrating reasoning and planning over multiple databases, improving accuracy by 29.78\%. ChipXplore lays the foundation for building autonomous agents capable of tackling diverse physical design tasks that require PDK and hardware design awareness.
- Abstract(参考訳): ハードウェア設計ワークフローは、異なる製造ノードのプロセス設計キット(PDK)に依存しており、それぞれが速度、電力、密度に最適化された標準セルライブラリを含んでいる。
エンジニアは通常、設計とターゲットPDKの間をナビゲートして、エリア最適化のためのゲートを選択したり、クリティカルパスの速度を向上したりといった情報的な決定を行う。
しかしながら、このプロセスは手作業で、時間がかかり、エラーを起こしやすいことが多い。
そこで我々は,大規模言語モデルを利用したマルチエージェント協調フレームワークChipXploreを紹介した。
PDKとハードウェア設計データの構造的性質を活用することで、ChipXploreは、テキストからSQL、テキストからCypherへのカスタマイズワークフローを通じて、関連する情報を検索する。
このフレームワークは、複雑な自然言語クエリにおいて97.39\%の実行精度を達成し、検索を5.63倍速くし、ユーザ研究においてエラーを5.25倍削減することで生産性を向上させる。
一般的なワークフローと比較して、ChipXploreのカスタマイズされたワークフローは、複数のデータベース上の推論と計画のオーケストレーションを可能にし、精度を29.78\%向上させる。
ChipXploreは、PDKとハードウェア設計の認識を必要とする多様な物理的設計タスクに対処できる自律エージェントを構築するための基盤を築いている。
関連論文リスト
- ML For Hardware Design Interpretability: Challenges and Opportunities [3.3540424603831323]
本稿では,特にRTL-to-NLタスクにおける設計の解釈可能性が,ハードウェア設計プロセスの効率に与える影響について検討する。
我々は,MLを活用したRTL-to-NLタスクの自動化とハードウェア設計の解釈性の向上について,今後の研究を導くことを目的としている。
論文 参考訳(メタデータ) (2025-04-11T03:47:51Z) - Semi-Automated Design of Data-Intensive Architectures [49.1574468325115]
本稿では,データ集約型アーキテクチャの開発手法を紹介する。
i) 特定のアプリケーションシナリオに適したアーキテクチャを設計し、(ii) アプリケーションを実装するための具体的なシステムの適切なセットを選択することをアーキテクトに案内します。
私たちが採用している記述言語は、研究者や実践者が提案するデータ集約アーキテクチャの重要な側面を捉えることができる。
論文 参考訳(メタデータ) (2025-03-21T16:01:11Z) - Specifications: The missing link to making the development of LLM systems an engineering discipline [65.10077876035417]
我々は、構造化出力、プロセスの監督、テストタイム計算など、これまでの分野の進歩について論じる。
モジュール型かつ信頼性の高いLCMシステムの開発に向けた研究の今後の方向性について概説する。
論文 参考訳(メタデータ) (2024-11-25T07:48:31Z) - MG-Verilog: Multi-grained Dataset Towards Enhanced LLM-assisted Verilog Generation [16.836658183451764]
大規模言語モデル(LLM)は、ドメイン固有の膨大なデータをカプセル化することによって、ハードウェア設計プロセスの合理化を約束している。
既存の利用可能なハードウェアデータセットは、サイズ、複雑さ、詳細に制限されることが多い。
本稿では,多段階の詳細な記述と対応するコードサンプルを包含したMulti-Grained-Verilog(MG-Verilog)データセットを提案する。
論文 参考訳(メタデータ) (2024-07-02T03:21:24Z) - PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
本研究では,グラフィックレイアウトの自動生成のための統合フレームワークを提案する。
データ駆動方式では、レイアウトを生成するために構造化テキスト(JSONフォーマット)とビジュアルインストラクションチューニングを用いる。
我々は、大規模な実験を行い、パブリックなマルチモーダルレイアウト生成ベンチマーク上で、最先端(SOTA)性能を達成した。
論文 参考訳(メタデータ) (2024-06-05T03:05:52Z) - DesignQA: A Multimodal Benchmark for Evaluating Large Language Models' Understanding of Engineering Documentation [3.2169312784098705]
本研究は,多モーダル大規模言語モデル(MLLM)の熟練度を評価するための新しいベンチマークであるDesignQAを紹介する。
DesignQAは、フォーミュラSAE学生コンペティションから派生したマルチモーダルデータ、テキストデザイン要件、CADイメージ、エンジニアリング図面を独自に組み合わせている。
論文 参考訳(メタデータ) (2024-04-11T16:59:54Z) - Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators [77.89070422157178]
AI統合製品の製造者は、製品のパフォーマンス要件に適合するアクセラレータを選択するという、重大な課題に直面します。
抽象コンピュータアーキテクチャ記述言語(ACADL)は、コンピュータアーキテクチャブロック図の簡潔な形式化である。
本稿では,AIハードウェアアクセラレーションのモデル化にACADLを用いること,DNNのマッピングにACADL記述を使用し,タイミングシミュレーションのセマンティクスを解説し,性能評価結果の収集を行う。
論文 参考訳(メタデータ) (2024-01-30T19:27:16Z) - Zero-Shot RTL Code Generation with Attention Sink Augmented Large
Language Models [0.0]
本稿では,大規模言語モデルを利用したハードウェア設計におけるコード生成プロセスの合理化の可能性について論じる。
RTLコード生成で大きな言語モデルを使用する能力は、設計サイクルを高速化するだけでなく、設計空間の探索を促進する。
論文 参考訳(メタデータ) (2024-01-12T17:41:38Z) - LLM4EDA: Emerging Progress in Large Language Models for Electronic
Design Automation [74.7163199054881]
大規模言語モデル(LLM)は、文脈理解、論理推論、回答生成においてその能力を実証している。
本稿では,EDA分野におけるLLMの応用に関する系統的研究を行う。
論理合成,物理設計,マルチモーダル特徴抽出,回路のアライメントにLLMを適用することに焦点を当て,今後の研究の方向性を強調した。
論文 参考訳(メタデータ) (2023-12-28T15:09:14Z) - SQuADDS: A validated design database and simulation workflow for superconducting qubit design [2.394350905741035]
本稿では,超伝導デバイス設計のオープンソースデータベースについて紹介する。
設計シミュレーションにおいて高い精度を実現するためのロバストな手法を提案する。
我々のデータベースにはフロントエンドインタフェースが含まれており、ユーザーは所望の回路パラメータに基づいてベストグの設計を生成できる。
論文 参考訳(メタデータ) (2023-12-20T23:31:53Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
我々は、最先端のCode LLMとコードインテリジェンスのためのオープンソースのTransformerベースのライブラリであるCodeTFを紹介する。
我々のライブラリは、事前訓練されたコードLLMモデルと人気のあるコードベンチマークのコレクションをサポートします。
CodeTFが機械学習/生成AIとソフトウェア工学のギャップを埋められることを願っている。
論文 参考訳(メタデータ) (2023-05-31T05:24:48Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
マイクロプロセッサアーキテクトは、高性能でエネルギー効率の追求において、ドメイン固有のカスタマイズにますます頼っている。
この問題に対処するために,Multi-Agent RL (MARL) を利用した別の定式化を提案する。
評価の結果,MARLの定式化は単エージェントRLのベースラインよりも一貫して優れていた。
論文 参考訳(メタデータ) (2022-11-29T17:10:24Z) - Enabling Cross-Domain Communication: How to Bridge the Gap between AI
and HW Engineers [0.17205106391379021]
システム設計における重要な問題は、ハードウェア、ソフトウェア、ドメインエキスパート間のコミュニケーションの欠如である。
最近の研究は、ニューラルアクセラレータの自動HW/SW共同設計フローの進歩を示しています。
本稿では、(構成可能な)専用加速器を含むシステムの方法論の確立の可能性について論じる。
論文 参考訳(メタデータ) (2021-04-08T14:05:15Z) - Simultaneous Navigation and Construction Benchmarking Environments [73.0706832393065]
モバイル構築のためのインテリジェントなロボット、環境をナビゲートし、幾何学的設計に従ってその構造を変更するプロセスが必要です。
このタスクでは、ロボットのビジョンと学習の大きな課題は、GPSなしでデザインを正確に達成する方法です。
我々は,手工芸政策の性能を,基礎的なローカライゼーションと計画,最先端の深層強化学習手法を用いて評価した。
論文 参考訳(メタデータ) (2021-03-31T00:05:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。