論文の概要: A Resolution Independent Neural Operator
- arxiv url: http://arxiv.org/abs/2407.13010v1
- Date: Wed, 17 Jul 2024 21:03:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 19:23:28.043300
- Title: A Resolution Independent Neural Operator
- Title(参考訳): 分解能独立型ニューラル演算子
- Authors: Bahador Bahmani, Somdatta Goswami, Ioannis G. Kevrekidis, Michael D. Shields,
- Abstract要約: 本稿では,DeepONetの分解能を独立にするためのフレームワークを提供するResolvion Independent Neural Operator (RINO)を紹介する。
RINOにより、DeepONetは任意に、しかし十分に微妙に識別された入力関数を処理できる。
任意に処理するRINOの頑健さと適用性(しかし十分に豊富なサンプル入力関数)を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Deep operator network (DeepONet) is a powerful yet simple neural operator architecture that utilizes two deep neural networks to learn mappings between infinite-dimensional function spaces. This architecture is highly flexible, allowing the evaluation of the solution field at any location within the desired domain. However, it imposes a strict constraint on the input space, requiring all input functions to be discretized at the same locations; this limits its practical applications. In this work, we introduce a Resolution Independent Neural Operator (RINO) that provides a framework to make DeepONet resolution-independent, enabling it to handle input functions that are arbitrarily, but sufficiently finely, discretized. To this end, we propose a dictionary learning algorithm to adaptively learn a set of appropriate continuous basis functions, parameterized as implicit neural representations (INRs), from the input data. These basis functions are then used to project arbitrary input function data as a point cloud onto an embedding space (i.e., a vector space of finite dimensions) with dimensionality equal to the dictionary size, which can be directly used by DeepONet without any architectural changes. In particular, we utilize sinusoidal representation networks (SIRENs) as our trainable INR basis functions. We demonstrate the robustness and applicability of RINO in handling arbitrarily (but sufficiently richly) sampled input functions during both training and inference through several numerical examples.
- Abstract(参考訳): Deep operator Network(ディープ・オペレータ・ネットワーク、DeepONet)は、無限次元関数空間間のマッピングを学習するために2つのディープ・ニューラルネットワークを利用する、強力で単純なニューラル・オペレーター・アーキテクチャである。
このアーキテクチャは非常に柔軟であり、所望の領域内の任意の場所における解場の評価を可能にする。
しかし、入力空間に厳密な制約を課し、全ての入力関数を同じ場所で離散化する必要がある。
本研究では,DeepONetの分解能を独立にするためのフレームワークであるResolvion Independent Neural Operator (RINO)を導入し,任意だが十分な精度で離散化された入力関数を処理できるようにする。
そこで本研究では,入力データから暗黙的ニューラル表現(INR)としてパラメータ化された,適切な連続基底関数の集合を適応的に学習する辞書学習アルゴリズムを提案する。
これらの基底関数は任意の入力関数データを点クラウドとして埋め込み空間(つまり有限次元のベクトル空間)に射影し、ディメンタリティは辞書のサイズに等しい。
特に、トレーニング可能なINR基底関数として正弦波表現ネットワーク(SIREN)を利用する。
本稿では,RINOの任意の(しかし十分にリッチな)サンプル入力関数の学習および推論における頑健さと適用性について,いくつかの数値例を通して示す。
関連論文リスト
- Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
本稿では,2つのフレームワークで局所的な特徴をキャプチャできる演算子学習の原理的アプローチを提案する。
我々はCNNのカーネル値の適切なスケーリングの下で微分演算子を得ることを示す。
局所積分演算子を得るには、離散連続的畳み込みに基づくカーネルの適切な基底表現を利用する。
論文 参考訳(メタデータ) (2024-02-26T18:59:31Z) - Provable Data Subset Selection For Efficient Neural Network Training [73.34254513162898]
本稿では,任意の放射基底関数ネットワーク上での入力データの損失を近似する,emphRBFNNのコアセットを構成するアルゴリズムについて紹介する。
次に、一般的なネットワークアーキテクチャやデータセット上で、関数近似とデータセットサブセットの選択に関する経験的評価を行う。
論文 参考訳(メタデータ) (2023-03-09T10:08:34Z) - Efficient Parametric Approximations of Neural Network Function Space
Distance [6.117371161379209]
モデルパラメータとトレーニングデータの重要な特性をコンパクトに要約して、データセット全体を保存または/または反復することなく後で使用できるようにすることが、しばしば有用である。
我々は,FSD(Function Space Distance)をトレーニングセット上で推定することを検討する。
本稿では、線形化活性化TRick (LAFTR) を提案し、ReLUニューラルネットワークに対するFSDの効率的な近似を導出する。
論文 参考訳(メタデータ) (2023-02-07T15:09:23Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
本稿では,近似関数の能力を大幅に向上させるVersatile Neural Processs (VNP)を提案する。
具体的には、より少ない情報的コンテキストトークンを生成するボトルネックエンコーダを導入し、高い計算コストを軽減した。
提案したVNPが1D, 2D, 3D信号を含む様々なタスクに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-01-21T04:08:46Z) - Variable Bitrate Neural Fields [75.24672452527795]
本稿では,特徴格子を圧縮し,メモリ消費を最大100倍に削減する辞書手法を提案する。
辞書の最適化をベクトル量子化オートデコーダ問題として定式化し、直接監督できない空間において、エンドツーエンドの離散神経表現を学習する。
論文 参考訳(メタデータ) (2022-06-15T17:58:34Z) - Deep Neural Network Classifier for Multi-dimensional Functional Data [4.340040784481499]
我々は,多次元関数型データを分類するFDNN(Functional Deep Neural Network)と呼ばれる新しい手法を提案する。
具体的には、将来のデータ関数のクラスラベルを予測するために使用されるトレーニングデータの原則コンポーネントに基づいて、ディープニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2022-05-17T19:22:48Z) - Enhanced DeepONet for Modeling Partial Differential Operators
Considering Multiple Input Functions [5.819397109258169]
偏微分方程式(PDE)に対する一般非線形連続作用素をモデル化するディープネットワーク演算子(DeepONet)が提案された。
既存のDeepONetは1つの入力関数しか受け付けないため、アプリケーションに制限がある。
本稿では、2つの入力関数を2つの分枝サブネットワークで表現する拡張DeepONetまたはEDeepONet高レベルニューラルネットワーク構造を提案する。
2つの偏微分方程式の例をモデル化した結果、提案した拡張DeepONetは約7X-17Xであり、完全に連結されたニューラルネットワークよりも約1桁精度が高いことがわかった。
論文 参考訳(メタデータ) (2022-02-17T23:58:23Z) - Deep Parametric Continuous Convolutional Neural Networks [92.87547731907176]
Parametric Continuous Convolutionは、非グリッド構造化データ上で動作する、新たな学習可能な演算子である。
室内および屋外シーンの点雲セグメンテーションにおける最先端技術よりも顕著な改善が見られた。
論文 参考訳(メタデータ) (2021-01-17T18:28:23Z) - A Functional Perspective on Learning Symmetric Functions with Neural
Networks [48.80300074254758]
本研究では,測定値に基づいて定義されたニューラルネットワークの学習と表現について検討する。
正規化の異なる選択の下で近似と一般化境界を確立する。
得られたモデルは効率よく学習でき、入力サイズにまたがる一般化保証を享受できる。
論文 参考訳(メタデータ) (2020-08-16T16:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。