論文の概要: D2NO: Efficient Handling of Heterogeneous Input Function Spaces with
Distributed Deep Neural Operators
- arxiv url: http://arxiv.org/abs/2310.18888v1
- Date: Sun, 29 Oct 2023 03:29:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 15:56:50.004078
- Title: D2NO: Efficient Handling of Heterogeneous Input Function Spaces with
Distributed Deep Neural Operators
- Title(参考訳): d2no: 分散ディープニューラル演算子を用いた異種入力関数空間の効率的な処理
- Authors: Zecheng Zhang, Christian Moya, Lu Lu, Guang Lin, Hayden Schaeffer
- Abstract要約: 異種性を示す入力関数を扱うための新しい分散手法を提案する。
中央ニューラルネットワークは、すべての出力関数間で共有情報を処理するために使用される。
ニューラルネットワークが連続非線形作用素の普遍近似であることを示す。
- 参考スコア(独自算出の注目度): 7.119066725173193
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural operators have been applied in various scientific fields, such as
solving parametric partial differential equations, dynamical systems with
control, and inverse problems. However, challenges arise when dealing with
input functions that exhibit heterogeneous properties, requiring multiple
sensors to handle functions with minimal regularity. To address this issue,
discretization-invariant neural operators have been used, allowing the sampling
of diverse input functions with different sensor locations. However, existing
frameworks still require an equal number of sensors for all functions. In our
study, we propose a novel distributed approach to further relax the
discretization requirements and solve the heterogeneous dataset challenges. Our
method involves partitioning the input function space and processing individual
input functions using independent and separate neural networks. A centralized
neural network is used to handle shared information across all output
functions. This distributed methodology reduces the number of gradient descent
back-propagation steps, improving efficiency while maintaining accuracy. We
demonstrate that the corresponding neural network is a universal approximator
of continuous nonlinear operators and present four numerical examples to
validate its performance.
- Abstract(参考訳): 神経演算子はパラメトリック偏微分方程式の解法、制御を伴う力学系、逆問題など様々な科学分野に応用されている。
しかし、異質な特性を持つ入力関数を扱う場合には、複数のセンサが最小限の正規性で関数を処理する必要がある。
この問題に対処するために、離散化不変のニューラル演算子を使用し、異なるセンサー位置を持つ多様な入力関数のサンプリングを可能にした。
しかし、既存のフレームワークは全ての機能に同じ数のセンサーを必要とする。
本研究では,離散化要件をさらに緩和し,異種データセットの課題を解決するための新しい分散手法を提案する。
入力関数空間を分割し、独立したニューラルネットワークを用いて個別の入力関数を処理する。
集中型ニューラルネットワークは、すべての出力関数間の共有情報を処理するために使用される。
この分散手法は、勾配降下バックプロパゲーションステップの数を削減し、精度を維持しながら効率を向上する。
ニューラルネットワークは連続非線形演算子の普遍近似であり,その性能を検証するための数値例を4つ提示する。
関連論文リスト
- Learning Partial Differential Equations with Deep Parallel Neural Operator [11.121415128908566]
新たな手法は、出力間のマッピングを近似する手段として演算子を学ぶことである。
物理科学の実践的な問題では、偏微分方程式の数値解は複雑である。
偏微分方程式の解法を効率よく正確に解くために,DPNO(Deep parallel operator model)を提案する。
論文 参考訳(メタデータ) (2024-09-30T06:04:04Z) - Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
ニューラル作用素におけるベイズの不確かさを近似する新しい枠組みを導入する。
我々の手法は関数型プログラミングからカリー化の概念の確率論的類似体と解釈できる。
我々は、異なるタイプの偏微分方程式への応用を通して、我々のアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-06-07T16:43:54Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
本稿では,2つのフレームワークで局所的な特徴をキャプチャできる演算子学習の原理的アプローチを提案する。
我々はCNNのカーネル値の適切なスケーリングの下で微分演算子を得ることを示す。
局所積分演算子を得るには、離散連続的畳み込みに基づくカーネルの適切な基底表現を利用する。
論文 参考訳(メタデータ) (2024-02-26T18:59:31Z) - Nonlinear functional regression by functional deep neural network with
kernel embedding [20.306390874610635]
本稿では,効率的かつ完全なデータ依存型次元減少法を備えた機能的ディープニューラルネットワークを提案する。
機能ネットのアーキテクチャは、カーネル埋め込みステップ、プロジェクションステップ、予測のための深いReLUニューラルネットワークで構成される。
スムーズなカーネル埋め込みを利用することで、我々の関数ネットは離散化不変であり、効率的で、頑健でノイズの多い観測が可能となる。
論文 参考訳(メタデータ) (2024-01-05T16:43:39Z) - Hyena Neural Operator for Partial Differential Equations [9.438207505148947]
ディープラーニングの最近の進歩は、ニューラル演算子の使用を含む偏微分方程式を解くための新しいアプローチをもたらした。
この研究は、多層パーセプトロンによってパラメータ化される長い畳み込みフィルタを使用するHyenaと呼ばれるニューラル演算子を利用する。
この結果から,ハイエナは偏微分方程式解演算器の効率的かつ高精度なモデルとして機能することが示唆された。
論文 参考訳(メタデータ) (2023-06-28T19:45:45Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
本稿では,無限次元関数空間間を写像する演算子,いわゆるニューラル演算子を学習するためのニューラルネットワークの一般化を提案する。
提案したニューラル作用素に対して普遍近似定理を証明し、任意の非線形連続作用素を近似することができることを示す。
ニューラル作用素に対する重要な応用は、偏微分方程式の解作用素に対する代理写像を学習することである。
論文 参考訳(メタデータ) (2021-08-19T03:56:49Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - No one-hidden-layer neural network can represent multivariable functions [0.0]
ニューラルネットワークによる関数近似において、各隠れ層ユニットのパラメータを最適化することにより、入力データセットを出力インデックスにマッピングする。
整列線形単位(ReLU)アクティベーション関数を持つ一隠れ層ニューラルネットワークの連続バージョンを構築することにより、パラメータとその第2の導関数に制約を与える。
論文 参考訳(メタデータ) (2020-06-19T06:46:54Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。