UCIP: A Universal Framework for Compressed Image Super-Resolution using Dynamic Prompt
- URL: http://arxiv.org/abs/2407.13108v1
- Date: Thu, 18 Jul 2024 02:36:39 GMT
- Title: UCIP: A Universal Framework for Compressed Image Super-Resolution using Dynamic Prompt
- Authors: Xin Li, Bingchen Li, Yeying Jin, Cuiling Lan, Hanxin Zhu, Yulin Ren, Zhibo Chen,
- Abstract summary: Compressed Image Super-resolution (CSR) aims to simultaneously super-resolve the compressed images and tackle the challenging hybrid distortions caused by compression.
We propose the first universal CSR framework, dubbed UCIP, with dynamic prompt learning.
Experiments have shown the consistent and excellent performance of our UCIP on universal CSR tasks.
- Score: 28.67147892614428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compressed Image Super-resolution (CSR) aims to simultaneously super-resolve the compressed images and tackle the challenging hybrid distortions caused by compression. However, existing works on CSR usually focuses on a single compression codec, i.e., JPEG, ignoring the diverse traditional or learning-based codecs in the practical application, e.g., HEVC, VVC, HIFIC, etc. In this work, we propose the first universal CSR framework, dubbed UCIP, with dynamic prompt learning, intending to jointly support the CSR distortions of any compression codecs/modes. Particularly, an efficient dynamic prompt strategy is proposed to mine the content/spatial-aware task-adaptive contextual information for the universal CSR task, using only a small amount of prompts with spatial size 1x1. To simplify contextual information mining, we introduce the novel MLP-like framework backbone for our UCIP by adapting the Active Token Mixer (ATM) to CSR tasks for the first time, where the global information modeling is only taken in horizontal and vertical directions with offset prediction. We also build an all-in-one benchmark dataset for the CSR task by collecting the datasets with the popular 6 diverse traditional and learning-based codecs, including JPEG, HEVC, VVC, HIFIC, etc., resulting in 23 common degradations. Extensive experiments have shown the consistent and excellent performance of our UCIP on universal CSR tasks. The project can be found in https://lixinustc.github.io/UCIP.github.io
Related papers
- HyCoT: A Transformer-Based Autoencoder for Hyperspectral Image Compression [6.0163252984457145]
Hyperspectral Compression Transformer (HyCoT) is a transformer-based autoencoder for pixelwise HSI compression.
Experimental results on the HySpecNet-11k dataset demonstrate that HyCoT surpasses the state of the art across various compression ratios by over 1 dB of PSNR.
arXiv Detail & Related papers (2024-08-16T12:27:46Z) - Exploiting Inter-Image Similarity Prior for Low-Bitrate Remote Sensing Image Compression [10.427300958330816]
We propose a codebook-based RS image compression (Code-RSIC) method with a generated discrete codebook.
The code significantly outperforms state-of-the-art traditional and learning-based image compression algorithms in terms of perception quality.
arXiv Detail & Related papers (2024-07-17T03:33:16Z) - UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Implicit Neural Representation (INR) networks have shown remarkable versatility due to their flexible compression ratios.
We introduce a codebook containing frequency domain information as a prior input to the INR network.
This enhances the representational power of INR and provides distinctive conditioning for different image blocks.
arXiv Detail & Related papers (2024-05-27T05:52:13Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - Rapid-INR: Storage Efficient CPU-free DNN Training Using Implicit Neural Representation [7.539498729072623]
Implicit Neural Representation (INR) is an innovative approach for representing complex shapes or objects without explicitly defining their geometry or surface structure.
Previous research has demonstrated the effectiveness of using neural networks as INR for image compression, showcasing comparable performance to traditional methods such as JPEG.
This paper introduces Rapid-INR, a novel approach that utilizes INR for encoding and compressing images, thereby accelerating neural network training in computer vision tasks.
arXiv Detail & Related papers (2023-06-29T05:49:07Z) - Binarized Spectral Compressive Imaging [59.18636040850608]
Existing deep learning models for hyperspectral image (HSI) reconstruction achieve good performance but require powerful hardwares with enormous memory and computational resources.
We propose a novel method, Binarized Spectral-Redistribution Network (BiSRNet)
BiSRNet is derived by using the proposed techniques to binarize the base model.
arXiv Detail & Related papers (2023-05-17T15:36:08Z) - Split Hierarchical Variational Compression [21.474095984110622]
Variational autoencoders (VAEs) have witnessed great success in performing the compression of image datasets.
SHVC introduces an efficient autoregressive sub-pixel convolution, that allows a generalisation between per-pixel autoregressions and fully factorised probability models.
arXiv Detail & Related papers (2022-04-05T09:13:38Z) - The Devil Is in the Details: Window-based Attention for Image
Compression [58.1577742463617]
Most existing learned image compression models are based on Convolutional Neural Networks (CNNs)
In this paper, we study the effects of multiple kinds of attention mechanisms for local features learning, then introduce a more straightforward yet effective window-based local attention block.
The proposed window-based attention is very flexible which could work as a plug-and-play component to enhance CNN and Transformer models.
arXiv Detail & Related papers (2022-03-16T07:55:49Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Learned Multi-Resolution Variable-Rate Image Compression with
Octave-based Residual Blocks [15.308823742699039]
We propose a new variable-rate image compression framework, which employs generalized octave convolutions (GoConv) and generalized octave transposed-convolutions (GoTConv)
To enable a single model to operate with different bit rates and to learn multi-rate image features, a new objective function is introduced.
Experimental results show that the proposed framework trained with variable-rate objective function outperforms the standard codecs such as H.265/HEVC-based BPG and state-of-the-art learning-based variable-rate methods.
arXiv Detail & Related papers (2020-12-31T06:26:56Z) - DDet: Dual-path Dynamic Enhancement Network for Real-World Image
Super-Resolution [69.2432352477966]
Real image super-resolution(Real-SR) focus on the relationship between real-world high-resolution(HR) and low-resolution(LR) image.
In this article, we propose a Dual-path Dynamic Enhancement Network(DDet) for Real-SR.
Unlike conventional methods which stack up massive convolutional blocks for feature representation, we introduce a content-aware framework to study non-inherently aligned image pair.
arXiv Detail & Related papers (2020-02-25T18:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.