論文の概要: A Framework for Spatio-Temporal Graph Analytics In Field Sports
- arxiv url: http://arxiv.org/abs/2407.13109v1
- Date: Fri, 31 May 2024 15:28:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 08:07:30.762444
- Title: A Framework for Spatio-Temporal Graph Analytics In Field Sports
- Title(参考訳): フィールドスポーツにおける時空間グラフ分析のためのフレームワーク
- Authors: Valerio Antonini, Michael Scriney, Alessandra Mileo, Mark Roantree,
- Abstract要約: 本研究では,フィールドスポーツのためのタイムウィンドな空間活動グラフ(TWG)を構築するためのアプローチを提案する。
ゲーリックフットボールの試合から得られたGPSデータを用いて,我々のアプローチをどのように活用できるかを実証する。
- 参考スコア(独自算出の注目度): 43.148818844265236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The global sports analytics industry has a market value of USD 3.78 billion in 2023. The increase of wearables such as GPS sensors has provided analysts with large fine-grained datasets detailing player performance. Traditional analysis of this data focuses on individual athletes with measures of internal and external loading such as distance covered in speed zones or rate of perceived exertion. However these metrics do not provide enough information to understand team dynamics within field sports. The spatio-temporal nature of match play necessitates an investment in date-engineering to adequately transform the data into a suitable format to extract features such as areas of activity. In this paper we present an approach to construct Time-Window Spatial Activity Graphs (TWGs) for field sports. Using GPS data obtained from Gaelic Football matches we demonstrate how our approach can be utilised to extract spatio-temporal features from GPS sensor data
- Abstract(参考訳): 世界的なスポーツ分析産業は2023年に378億ドルの時価総額を持つ。
GPSセンサーのようなウェアラブルデバイスの増加は、プレイヤーのパフォーマンスを詳細に示す、大きなきめ細かいデータセットをアナリストに提供する。
このデータの伝統的な分析は、スピードゾーンでカバーされた距離や運動の知覚率など、内部および外部の負荷を測定する個々のアスリートに焦点を当てている。
しかし、これらのメトリクスは、フィールドスポーツ内のチームのダイナミクスを理解するのに十分な情報を提供していません。
マッチプレイの時空間的性質は、データを適切なフォーマットに適切に変換し、活動領域のような特徴を抽出するために、日付エンジニアリングへの投資を必要とする。
本稿では,フィールドスポーツのためのタイムウィンドな空間活動グラフ(TWG)を構築するためのアプローチを提案する。
ゲールフットボールの試合から得られたGPSデータを用いて,GPSセンサデータから時空間的特徴を抽出する方法を実証する。
関連論文リスト
- Deep learning for action spotting in association football videos [64.10841325879996]
SoccerNetイニシアチブは毎年の課題を組織し、世界中の参加者が最先端のパフォーマンスを達成するために競う。
本稿では,スポーツにおけるアクションスポッティングの歴史を,2018年の課題の創出から,現在の研究・スポーツ産業における役割まで遡る。
論文 参考訳(メタデータ) (2024-10-02T07:56:15Z) - ShuttleSet: A Human-Annotated Stroke-Level Singles Dataset for Badminton
Tactical Analysis [5.609957071296952]
我々は、アノテートされたストロークレベルの記録を持つ、公開可能な最大のバドミントンシングルスデータセットであるShuttleSetを紹介する。
104セット、3,685ラリー、36,492ストロークが2018年から2021年にかけて44試合に出場し、27人の男子シングルと女子シングルが出場した。
ShuttleSetはコンピュータ支援ラベル付けツールで手動で注釈付けされ、ショットタイプを選択する際のラベル付け効率と有効性を高める。
論文 参考訳(メタデータ) (2023-06-08T05:41:42Z) - Hang-Time HAR: A Benchmark Dataset for Basketball Activity Recognition using Wrist-Worn Inertial Sensors [47.33629411771497]
本稿では,手首に装着したセンサから身体活動認識手法を評価するためのベンチマークデータセットを提案する。
データセットは、米国とドイツの2つのチームで記録され、計24人のプレーヤーが手首に慣性センサーを装着した。
論文 参考訳(メタデータ) (2023-05-22T15:25:29Z) - Large Scale Real-World Multi-Person Tracking [68.27438015329807]
本稿では,新しい大規模多人数追跡データセットであるtexttPersonPath22を提案する。
MOT17、HiEve、MOT20などの高品質なマルチオブジェクト追跡データセットよりも桁違いに大きい。
論文 参考訳(メタデータ) (2022-11-03T23:03:13Z) - Graph Neural Networks to Predict Sports Outcomes [0.0]
スポーツに依存しないグラフによるゲーム状態の表現を導入する。
次に、提案したグラフ表現をグラフニューラルネットワークの入力として使用し、スポーツ結果を予測する。
論文 参考訳(メタデータ) (2022-07-28T14:45:02Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
本稿では,各30の200列からなる複数物体追跡のための新しいデータセットを提案する。
データセットは、バウンディングボックスとトラックレットIDで完全に注釈付けされている。
分析の結果,サッカービデオにおける複数の選手,審判,ボール追跡が解決されるには程遠いことがわかった。
論文 参考訳(メタデータ) (2022-04-14T12:22:12Z) - Automatic event detection in football using tracking data [0.0]
本研究では,すべての選手と球の座標の追跡データを用いて,サッカーイベントを自動的に抽出するフレームワークを提案する。
提案手法は, 1) ボールが保持されていない時間間隔において, ボールが保持されているかのモデルと, ボールが保持されていない時間間隔の異なる選手構成の2つのモデルから成り立っている。
論文 参考訳(メタデータ) (2022-02-01T23:20:40Z) - Game Plan: What AI can do for Football, and What Football can do for AI [83.79507996785838]
予測的および規範的フットボール分析は、統計学習、ゲーム理論、コンピュータビジョンの交差点における新たな発展と進歩を必要とする。
フットボール分析は、サッカー自体のゲームを変えるだけでなく、この領域がAIの分野で何を意味するのかという観点からも、非常に価値の高いゲームチェンジャーであることを示す。
論文 参考訳(メタデータ) (2020-11-18T10:26:02Z) - Group Activity Detection from Trajectory and Video Data in Soccer [16.134402513773463]
サッカーにおけるグループアクティビティ検出は、ビデオデータまたはプレーヤとボールの軌跡データを用いて行うことができる。
現在のサッカーデータセットでは、活動は時間なしで原子イベントとしてラベル付けされる。
その結果,ほとんどの事象は,時間分解能が0.5秒未満の視力や軌跡に基づくアプローチで検出できることがわかった。
論文 参考訳(メタデータ) (2020-04-21T21:11:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。