論文の概要: Learned HDR Image Compression for Perceptually Optimal Storage and Display
- arxiv url: http://arxiv.org/abs/2407.13179v1
- Date: Thu, 18 Jul 2024 05:35:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 16:42:04.808617
- Title: Learned HDR Image Compression for Perceptually Optimal Storage and Display
- Title(参考訳): 知覚的最適記憶・表示のための学習したHDR画像圧縮
- Authors: Peibei Cao, Haoyu Chen, Jingzhe Ma, Yu-Chieh Yuan, Zhiyong Xie, Xin Xie, Haiqing Bai, Kede Ma,
- Abstract要約: 高ダイナミックレンジのキャプチャと表示は、技術の進歩と優れた画像品質に対する消費者の需要の増加により、人気が著しく上昇している。
その結果、HDR画像圧縮は、大きなファイルサイズと非効率なデータハンドリングに悩まされることなく、HDR画像の利点を十分に実現するために重要である。
本研究では,エンド・ツー・エンドで最適化されたHDR画像圧縮を,知覚的に最適な記憶・表示に活用するための取り組みを開始する。
- 参考スコア(独自算出の注目度): 21.772946547671122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High dynamic range (HDR) capture and display have seen significant growth in popularity driven by the advancements in technology and increasing consumer demand for superior image quality. As a result, HDR image compression is crucial to fully realize the benefits of HDR imaging without suffering from large file sizes and inefficient data handling. Conventionally, this is achieved by introducing a residual/gain map as additional metadata to bridge the gap between HDR and low dynamic range (LDR) images, making the former compatible with LDR image codecs but offering suboptimal rate-distortion performance. In this work, we initiate efforts towards end-to-end optimized HDR image compression for perceptually optimal storage and display. Specifically, we learn to compress an HDR image into two bitstreams: one for generating an LDR image to ensure compatibility with legacy LDR displays, and another as side information to aid HDR image reconstruction from the output LDR image. To measure the perceptual quality of output HDR and LDR images, we use two recently proposed image distortion metrics, both validated against human perceptual data of image quality and with reference to the uncompressed HDR image. Through end-to-end optimization for rate-distortion performance, our method dramatically improves HDR and LDR image quality at all bit rates.
- Abstract(参考訳): 高ダイナミックレンジ(HDR)のキャプチャと表示は、技術の進歩と優れた画像品質に対する消費者の需要の増加により、人気が著しく上昇している。
その結果、HDR画像圧縮は、大きなファイルサイズと非効率なデータハンドリングに悩まされることなく、HDR画像の利点を十分に実現するために重要である。
従来,HDR画像と低ダイナミックレンジ(LDR)画像のギャップを埋めるメタデータとして残差/ゲインマップを導入し,LDR画像コーデックと互換性を持つが,最適速度歪み性能を提供する。
本研究では,エンド・ツー・エンドで最適化されたHDR画像圧縮を,知覚的に最適な記憶・表示に活用するための取り組みを開始する。
具体的には、HDR画像を2つのビットストリームに圧縮することを学ぶ。1つは、従来のLDRディスプレイとの互換性を確保するためにLDR画像を生成するもので、もう1つは、出力されたLDR画像からのHDR画像再構成を支援する側情報である。
出力HDR画像とLDR画像の知覚的品質を測定するために,画像品質の人間の知覚的データと非圧縮HDR画像の両方に対して,最近提案された2つの画像歪み指標を用いた。
速度歪み性能のエンドツーエンド最適化により,HDRとLDRの画質を全ビットレートで劇的に向上させる。
関連論文リスト
- HDR-GS: Efficient High Dynamic Range Novel View Synthesis at 1000x Speed via Gaussian Splatting [76.5908492298286]
既存のHDR NVS法は主にNeRFに基づいている。
訓練時間は長く、推論速度は遅い。
我々は新しいフレームワークHigh Dynamic Range Gaussian Splatting (-GS)を提案する。
論文 参考訳(メタデータ) (2024-05-24T00:46:58Z) - Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
近年の拡散モデル (DM) はHDRイメージング分野に導入されている。
DMは画像全体を推定するために大きなモデルで広範囲の反復を必要とする。
ゴーストフリーHDRイメージングのための低周波数対応拡散(LF-Diff)モデルを提案する。
論文 参考訳(メタデータ) (2024-04-01T01:32:11Z) - HistoHDR-Net: Histogram Equalization for Single LDR to HDR Image
Translation [12.45632443397018]
高ダイナミックレンジ(HDR)イメージングは、現実世界のシーンの高画質と明快さを再現することを目的としている。
この文献は、低ダイナミックレンジ(Low Dynamic Range, LDR)からのHDR画像再構成のための様々なデータ駆動手法を提供している。
これらのアプローチの共通する制限は、再構成されたHDR画像の領域における詳細が欠けていることである。
細部を復元するためのシンプルで効果的な手法Histo-Netを提案する。
論文 参考訳(メタデータ) (2024-02-08T20:14:46Z) - Perceptual Assessment and Optimization of HDR Image Rendering [25.72195917050074]
高ダイナミックレンジレンダリングは、自然界の広い輝度範囲を忠実に再現する能力を持つ。
既存の画質モデルは、主に低ダイナミックレンジ(LDR)画像用に設計されており、HDR画像の品質に対する人間の認識とよく一致しない。
本稿では,HDR画像からLDR画像のスタックを分解するために,単純な逆表示モデルを用いるHDR品質指標のファミリを提案する。
論文 参考訳(メタデータ) (2023-10-19T16:32:18Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Selfは、訓練中にダイナミックなマルチ露光画像のみを必要とする自己教師型再構成手法である。
Selfは最先端の自己管理手法に対して優れた結果を出し、教師付き手法に匹敵するパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-10-03T07:10:49Z) - Efficient HDR Reconstruction from Real-World Raw Images [16.54071503000866]
エッジデバイス上の高解像度スクリーンは、効率的な高ダイナミックレンジ(HDR)アルゴリズムに対する強い需要を刺激する。
多くの既存のHDRメソッドは不満足な結果をもたらすか、計算資源やメモリ資源を消費する。
本研究では,生画像から直接HDRを再構成し,新しいニューラルネットワーク構造を探索する優れた機会を見出した。
論文 参考訳(メタデータ) (2023-06-17T10:10:15Z) - HDR Video Reconstruction with a Large Dynamic Dataset in Raw and sRGB
Domains [23.309488653045026]
高ダイナミックレンジ(HDR)ビデオ再構成は、低ダイナミックレンジ(LDR)ビデオと比較して視覚的品質が優れているため、ますます注目を集めている。
同時にLDRフレームを取得するのが難しいため、動的シーンのための実際のLDR-ペアはいまだに存在しない。
本研究では,2つの異なる露光画像を同時にキャプチャするスタッガーセンサを用いて,生領域とsRGB領域のHDRフレームに融合する手法を提案する。
論文 参考訳(メタデータ) (2023-04-10T11:59:03Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
そこで本研究では,HDR画像の生成モデルを構築するための第1の手法について述べる。
鍵となる考え方は、GAN(Generative Adversarial Network)を訓練して、様々な露光下でLDRに投影された場合、実際のLDR画像と区別できないHDR画像を生成することである。
実験の結果,GlowGANはランドスケープ,雷,窓など多くの難題において,光現実的HDR画像を合成できることがわかった。
論文 参考訳(メタデータ) (2022-11-22T15:42:08Z) - A Two-stage Deep Network for High Dynamic Range Image Reconstruction [0.883717274344425]
本研究では,新しい2段階深層ネットワークを提案することにより,シングルショットLDRからHDRマッピングへの課題に取り組む。
提案手法は,カメラ応答機能(CRF)や露光設定など,ハードウェア情報を知ることなくHDR画像の再構築を図ることを目的とする。
論文 参考訳(メタデータ) (2021-04-19T15:19:17Z) - Beyond Visual Attractiveness: Physically Plausible Single Image HDR
Reconstruction for Spherical Panoramas [60.24132321381606]
我々は,単発hdr再構成フレームワークに物理的照度制約を導入する。
本手法は,視覚に訴えるだけでなく,物理的に妥当なHDRを生成することができる。
論文 参考訳(メタデータ) (2021-03-24T01:51:19Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
マルチ露光LDR画像からHDR画像を合成するための新しいGANモデルHDR-GANを提案する。
本手法は,敵対学習を取り入れることで,欠落したコンテンツのある領域に忠実な情報を生成することができる。
論文 参考訳(メタデータ) (2020-07-03T11:42:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。