論文の概要: Scalable Exploration via Ensemble++
- arxiv url: http://arxiv.org/abs/2407.13195v5
- Date: Mon, 19 May 2025 03:28:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:10.199913
- Title: Scalable Exploration via Ensemble++
- Title(参考訳): Ensemble++によるスケーラブルな探索
- Authors: Yingru Li, Jiawei Xu, Baoxiang Wang, Zhi-Quan Luo,
- Abstract要約: ランダムな線形結合を持つ新しい共有要素アンサンブルアーキテクチャを用いたスケーラブルな探索フレームワークを提案する。
線形帯域については、Ensemble++がThompson Samplingに匹敵する後悔を達成していることを示す理論的保証を提供する。
我々は、固定された特徴を学習可能なニューラル表現に置き換えることで、この理論の基礎を非線形報酬に拡張する。
- 参考スコア(独自算出の注目度): 26.53967194965416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Thompson Sampling is a principled method for balancing exploration and exploitation, but its real-world adoption faces computational challenges in large-scale or non-conjugate settings. While ensemble-based approaches offer partial remedies, they typically require prohibitively large ensemble sizes. We propose Ensemble++, a scalable exploration framework using a novel shared-factor ensemble architecture with random linear combinations. For linear bandits, we provide theoretical guarantees showing that Ensemble++ achieves regret comparable to exact Thompson Sampling with only $\Theta(d \log T)$ ensemble sizes--significantly outperforming prior methods. Crucially, this efficiency holds across both compact and finite action sets with either time-invariant or time-varying contexts without configuration changes. We extend this theoretical foundation to nonlinear rewards by replacing fixed features with learnable neural representations while preserving the same incremental update principle, effectively bridging theory and practice for real-world tasks. Comprehensive experiments across linear, quadratic, neural, and GPT-based contextual bandits validate our theoretical findings and demonstrate Ensemble++'s superior regret-computation tradeoff versus state-of-the-art methods.
- Abstract(参考訳): トンプソンサンプリング(Thompson Sampling)は、探索と搾取のバランスをとるための原則的手法であるが、実世界の採用は大規模または非共役環境における計算上の課題に直面している。
アンサンブルに基づくアプローチは部分的な治療法を提供するが、通常は大きなアンサンブルサイズを必要とする。
本稿では,ランダムな線形結合を持つ新しい共有要素アンサンブルアーキテクチャを用いて,スケーラブルな探索フレームワークであるEnsemble++を提案する。
線形帯域については、Ensemble++がThompson Smplingに匹敵する後悔を達成していることを示す理論的な保証を提供する。
重要なことに、この効率性は、時間不変あるいは時間変化の文脈で構成変更なしにコンパクトかつ有限な作用集合にまたがる。
固定特徴を学習可能なニューラル表現に置き換えることにより、この理論基盤を非線形報酬に拡張し、同じ漸進的な更新原理を保ちながら、実世界のタスクに対する理論と実践を効果的にブリッジする。
線形、二次的、神経的、およびGPTに基づく文脈的帯域幅に関する総合的な実験は、我々の理論的な知見を検証し、Ensemble++の優れた後悔計算トレードオフと最先端の手法を実証する。
関連論文リスト
- Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update [60.414548453838506]
非線形リンク関数を組み込んで古典線形モデルを拡張したコンテキスト型多武装バンディットフレームワークである一般化線形バンディット問題(GLB)について検討する。
GLBは現実世界のシナリオに広く適用できるが、その非線形性は計算効率と統計効率の両方を達成する上で大きな課題をもたらす。
本稿では,$mathcalO(1)$時間と1ラウンドあたりの空間複雑度をほぼ最適に再現するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-07-16T02:24:21Z) - Neural Variance-aware Dueling Bandits with Deep Representation and Shallow Exploration [6.287267171078442]
ニューラルネットワークを利用して非線形ユーティリティ関数を近似する分散認識アルゴリズムを提案する。
十分広いニューラルネットワークに対して,我々のアルゴリズムが次数$bigollt(d sqrtsum_t=1T sigma_t2 + sqrtdTrt)のサブ線形累積平均後悔を達成できることを示す理論的保証を確立する。
論文 参考訳(メタデータ) (2025-06-02T01:58:48Z) - Scalable and Effective Negative Sample Generation for Hyperedge Prediction [55.9298019975967]
ハイパーエッジ予測は、Webベースのアプリケーションにおける複雑なマルチエンタリティ相互作用を理解するために不可欠である。
従来の手法では、正と負のインスタンスの不均衡により、高品質な負のサンプルを生成するのが困難であることが多い。
本稿では,これらの課題に対処するために拡散モデルを利用するハイパーエッジ予測(SEHP)フレームワークのスケーラブルで効果的な負のサンプル生成について述べる。
論文 参考訳(メタデータ) (2024-11-19T09:16:25Z) - Batch Ensemble for Variance Dependent Regret in Stochastic Bandits [41.95653110232677]
オンライン強化学習(RL:Reinforcement Learning)において、探索と搾取を効果的に行うことが重要な課題の1つだ。
実践的なアンサンブル法に着想を得た本研究では,マルチアーマッド・バンディット(MAB)のほぼ最適後悔を実現する,単純かつ新しいバッチアンサンブル方式を提案する。
提案アルゴリズムは, バッチ数という1つのパラメータしか持たず, 損失のスケールや分散といった分布特性に依存しない。
論文 参考訳(メタデータ) (2024-09-13T06:40:56Z) - Uncertainty of Joint Neural Contextual Bandit [0.41436032949434404]
本稿では,1つのモデルにおける全ての推奨項目を補完する,結合型ニューラルネットワークのコンテキスト的包帯解について述べる。
パラメータ $alpha$ のチューニングは通常、その性質のため、実際は複雑である。
我々は, 統合神経コンテキストバンドモデルの不確実性$sigma$に関する理論的解析と実験的知見の両方を提供する。
論文 参考訳(メタデータ) (2024-06-04T17:38:24Z) - DASA: Delay-Adaptive Multi-Agent Stochastic Approximation [64.32538247395627]
我々は,N$エージェントが並列に動作し,中央サーバと通信することで,一般的な近似問題を高速化することを目的とした設定を考える。
遅延とストラグラーの効果を軽減するために,マルチエージェント近似のための遅延適応アルゴリズムである textttDASA を提案する。
論文 参考訳(メタデータ) (2024-03-25T22:49:56Z) - An Efficient Rehearsal Scheme for Catastrophic Forgetting Mitigation during Multi-stage Fine-tuning [55.467047686093025]
このような忘れを緩和するための一般的なアプローチは、微調整中に以前のタスクからサンプルをリハーサルすることである。
側方損傷のリハーサルを優先するサンプリング手法である textttbf mix-cd を提案する。
我々の手法は計算効率が高く、実装が容易で、計算制約のある設定においていくつかの主要な連続学習手法より優れています。
論文 参考訳(メタデータ) (2024-02-12T22:32:12Z) - Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice via HyperAgent [23.669599662214686]
HyperAgentは、RLにおける探索のためのハイパーモデルフレームワークに基づく強化学習(RL)アルゴリズムである。
我々はHyperAgentが大規模深部RLベンチマークで堅牢なパフォーマンスを提供することを示した。
問題の大きさで最適にスケールし、Atariスイートで顕著な効率向上を示すエピソードでディープシーのハードな探索問題を解決することができる。
論文 参考訳(メタデータ) (2024-02-05T07:07:30Z) - Cooperative Thresholded Lasso for Sparse Linear Bandit [6.52540785559241]
本稿では,マルチエージェント・スパース文脈線形帯域問題に対処する新しい手法を提案する。
疎線形帯域における行単位の分散データに対処する最初のアルゴリズムである。
後悔を最小限に抑えるために効率的な特徴抽出が重要となる高次元マルチエージェント問題に適用可能である。
論文 参考訳(メタデータ) (2023-05-30T16:05:44Z) - Scalable Primal-Dual Actor-Critic Method for Safe Multi-Agent RL with
General Utilities [12.104551746465932]
安全マルチエージェント強化学習について検討し、エージェントはそれぞれの安全制約を満たしつつ、局所的な目的の総和をまとめて最大化しようとする。
我々のアルゴリズムは、$mathcalOleft(T-2/3right)$のレートで1次定常点(FOSP)に収束する。
サンプルベースの設定では、高い確率で、我々のアルゴリズムは、$epsilon$-FOSPを達成するために$widetildemathcalOleft(epsilon-3.5right)$サンプルが必要です。
論文 参考訳(メタデータ) (2023-05-27T20:08:35Z) - Online Continuous Hyperparameter Optimization for Generalized Linear Contextual Bandits [55.03293214439741]
文脈的包帯では、エージェントは過去の経験に基づいた時間依存アクションセットから順次アクションを行う。
そこで本稿では,文脈的包帯のためのオンライン連続型ハイパーパラメータチューニングフレームワークを提案する。
理論上はサブ線形の後悔を達成でき、合成データと実データの両方において既存のすべての手法よりも一貫して優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2023-02-18T23:31:20Z) - Flag Aggregator: Scalable Distributed Training under Failures and
Augmented Losses using Convex Optimization [14.732408788010313]
MLアプリケーションはますます、複雑なディープラーニングモデルと大規模なデータセットに依存している。
計算とデータをスケールするために、これらのモデルはノードのクラスタ内で分散的にトレーニングされ、それらの更新はモデルに適用される前に集約される。
これらの設定にデータ拡張を加えることで、堅牢で効率的なアグリゲーションシステムが必要である。
この手法は,最先端のビザンツ系レジリエントアグリゲータのロバスト性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-02-12T06:38:30Z) - Two-sided Competing Matching Recommendation Markets With Quota and Complementary Preferences Constraints [13.069703665055084]
本稿では,両面のオンラインマッチング市場において,補完的な嗜好とクォータ制約を伴う問題に対処する新しい推奨アルゴリズムを提案する。
混合クォータと相補的な選好制約の存在は、マッチングプロセスの不安定性を引き起こす。
バンドレート学習の枠組みとしてこの問題を定式化し,マルチエージェント多型トンプソンサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-24T18:54:29Z) - Generative Slate Recommendation with Reinforcement Learning [49.75985313698214]
強化学習アルゴリズムは、レコメンデータシステムのユーザエンゲージメントを最適化するために使用することができる。
しかし、RLアプローチはスレートレコメンデーションシナリオでは難解である。
この設定では、アクションはアイテムの組み合わせを含むことができるスレートに対応する。
本研究では,変分オートエンコーダによって学習された連続低次元ラテント空間におけるスレートの符号化を提案する。
我々は、(i)以前の作業で要求される仮定を緩和し、(ii)完全なスレートをモデル化することで、アクション選択の品質を向上させることができる。
論文 参考訳(メタデータ) (2023-01-20T15:28:09Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
構成問題の複雑さを軽減するために,MSVR (Multi-block-probe Variance Reduced) という新しい手法を提案する。
本研究の結果は, 試料の複雑さの順序や強靭性への依存など, 様々な面で先行して改善された。
論文 参考訳(メタデータ) (2022-07-18T12:03:26Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) が提案されている。
提案アルゴリズムは,文脈的帯域幅の特別な場合において,最高のトンプソンサンプリングアルゴリズムと同じサブ線形残差を達成できることを示す。
論文 参考訳(メタデータ) (2022-06-22T17:58:23Z) - Byzantine-Robust Online and Offline Distributed Reinforcement Learning [60.970950468309056]
本稿では,複数のエージェントが環境を探索し,その経験を中央サーバを通じて伝達する分散強化学習環境について考察する。
エージェントの$alpha$-fractionは敵対的であり、任意の偽情報を報告することができる。
我々は、これらの対立エージェントの存在下で、マルコフ決定プロセスの根底にある準最適政策を特定することを模索する。
論文 参考訳(メタデータ) (2022-06-01T00:44:53Z) - Generalizing Hierarchical Bayesian Bandits [14.986031916712108]
文脈的盗賊は、不確実性の下で行動するためのオンライン学習の一般的かつ実践的なフレームワークである。
本研究では,2段階のグラフィカルモデルを用いて,そのような相関関係を捉えるための一般的なフレームワークを提案する。
本稿では,この構造を用いて効率的に探索し,ベイズを後悔させるトンプソンサンプリングアルゴリズムG-HierTSを提案する。
論文 参考訳(メタデータ) (2022-05-30T14:17:56Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
本稿では,バンディットフィードバックを用いたオンラインクラスタリングの問題点について考察する。
これは、NPハード重み付きクラスタリング問題をサブルーチンとして解決する必要性を回避するための、シーケンシャルなテストのための新しい停止規則を含む。
合成および実世界のデータセットの広範なシミュレーションを通して、BOCの性能は下界と一致し、非適応的ベースラインアルゴリズムよりも大幅に優れることを示す。
論文 参考訳(メタデータ) (2022-02-09T06:05:05Z) - Inter-Domain Fusion for Enhanced Intrusion Detection in Power Systems:
An Evidence Theoretic and Meta-Heuristic Approach [0.0]
ICSネットワークにおけるIDSによる不正な警告は、経済的および運用上の重大な損害をもたらす可能性がある。
本研究は,CPS電力系統における誤警報の事前分布を伴わずに不確実性に対処し,誤警報を低減する手法を提案する。
論文 参考訳(メタデータ) (2021-11-20T00:05:39Z) - Anti-Concentrated Confidence Bonuses for Scalable Exploration [57.91943847134011]
固有の報酬は、探検と探検のトレードオフを扱う上で中心的な役割を果たす。
楕円ボーナスを効率的に近似するためのエンファンティ集中型信頼境界を導入する。
我々は,Atariベンチマーク上での現代固有の報酬と競合する,深層強化学習のための実用的な変種を開発する。
論文 参考訳(メタデータ) (2021-10-21T15:25:15Z) - On Reward-Free RL with Kernel and Neural Function Approximations:
Single-Agent MDP and Markov Game [140.19656665344917]
エージェントが事前に特定された報酬関数を使わずに環境を徹底的に探索することを目的とした報酬のないRL問題について検討する。
関数近似の文脈でこの問題に取り組み、強力な関数近似器を活用する。
我々は、カーネルとニューラルファンクション近似器を用いた、証明可能な効率の良い報酬なしRLアルゴリズムを確立した。
論文 参考訳(メタデータ) (2021-10-19T07:26:33Z) - Adapting to Misspecification in Contextual Bandits [82.55565343668246]
我々は、$varepsilon$-misspecified contextual banditsに対して、新しいオラクル効率アルゴリズム群を導入する。
我々は、未知の不特定値に対して最適な$O(dsqrtT + varepsilonsqrtdT)$ regret boundを達成する最初のアルゴリズムを得る。
論文 参考訳(メタデータ) (2021-07-12T21:30:41Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
本稿では,RLアルゴリズムによって収集されたデータポイントの情報取得量を測定する,効率的なオンラインサブサンプリングフレームワークを確立する。
複雑性バウンド関数クラスを持つ値ベースのメソッドの場合、$proptooperatornamepolylog(K)$ timesに対してのみポリシーを更新する必要がある。
少なくとも$Omega(K)$倍のポリシーを更新する既存のアプローチとは対照的に、当社のアプローチはポリシーの解決における最適化コールの数を劇的に削減します。
論文 参考訳(メタデータ) (2021-06-14T07:36:25Z) - Sample-Efficient Reinforcement Learning Is Feasible for Linearly
Realizable MDPs with Limited Revisiting [60.98700344526674]
線形関数表現のような低複雑度モデルがサンプル効率のよい強化学習を可能にする上で重要な役割を果たしている。
本稿では,オンライン/探索的な方法でサンプルを描画するが,制御不能な方法で以前の状態をバックトラックし,再訪することができる新しいサンプリングプロトコルについて検討する。
この設定に合わせたアルゴリズムを開発し、特徴次元、地平線、逆の準最適ギャップと実際にスケールするサンプル複雑性を実現するが、状態/作用空間のサイズではない。
論文 参考訳(メタデータ) (2021-05-17T17:22:07Z) - Cost-Efficient Online Hyperparameter Optimization [94.60924644778558]
実験の単一実行でヒトのエキスパートレベルのパフォーマンスに達するオンラインHPOアルゴリズムを提案します。
提案するオンラインhpoアルゴリズムは,実験の1回で人間のエキスパートレベルのパフォーマンスに到達できるが,通常のトレーニングに比べて計算オーバーヘッドは少ない。
論文 参考訳(メタデータ) (2021-01-17T04:55:30Z) - Decentralized Multi-Agent Linear Bandits with Safety Constraints [31.67685495996986]
本研究では,N$エージェントのネットワークが協調して線形帯域最適化問題を解く分散線形帯域幅について検討する。
ネットワーク全体の累積的後悔を最小限に抑える完全分散アルゴリズム DLUCB を提案する。
私たちのアイデアは、より困難な、安全な盗賊の設定にもかかわらず、自然界に広まっています。
論文 参考訳(メタデータ) (2020-12-01T07:33:00Z) - Experimental Design for Regret Minimization in Linear Bandits [19.8309784360219]
オンライン・リニア・バンドレットにおける後悔を最小限に抑える設計に基づく新しいアルゴリズムを提案する。
我々は、現在最先端の有限時間後悔保証を提供し、このアルゴリズムが帯域幅と半帯域幅の両方のフィードバックシステムに適用可能であることを示す。
論文 参考訳(メタデータ) (2020-11-01T17:59:19Z) - Structure Adaptive Algorithms for Stochastic Bandits [22.871155520200773]
構造化多武装バンディット問題のクラスにおける報酬最大化について検討する。
平均的な武器の報酬は、与えられた構造的制約を満たす。
我々は、反復的なサドルポイントソルバを用いて、インスタンス依存の低バウンドからのアルゴリズムを開発する。
論文 参考訳(メタデータ) (2020-07-02T08:59:54Z) - An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic
Gradient Descent and Thompson Sampling [83.48992319018147]
プレイヤーが過去の観測結果に基づいて逐次意思決定を行い、累積報酬を最大化する文脈的帯域幅問題を考える。
この問題を解決する自然な方法は、ステップごとの時間とメモリの複雑さを一定に抑えるために、オンライン勾配降下(SGD)を適用することである。
本研究では,オンラインSGDが一般化線形帯域問題に適用可能であることを示す。
過去の情報を活用するためにシングルステップのSGD更新を利用するSGD-TSアルゴリズムは、全時間複雑度で$tildeO(sqrtT)$ regretを達成する。
論文 参考訳(メタデータ) (2020-06-07T01:12:39Z) - Regret and Belief Complexity Trade-off in Gaussian Process Bandits via
Information Thresholding [42.669970064867556]
GPバンディットアルゴリズムの残差境界と後部分布の複雑さのトレードオフを特徴付ける方法を示す。
大域的最適化に応用したGPバンディットアルゴリズムの精度と複雑性のトレードオフを観察する。
論文 参考訳(メタデータ) (2020-03-23T21:05:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。