EnergyDiff: Universal Time-Series Energy Data Generation using Diffusion Models
- URL: http://arxiv.org/abs/2407.13538v2
- Date: Thu, 30 Jan 2025 20:15:12 GMT
- Title: EnergyDiff: Universal Time-Series Energy Data Generation using Diffusion Models
- Authors: Nan Lin, Peter Palensky, Pedro P. Vergara,
- Abstract summary: High-resolution time series data are crucial for the operation and planning of energy systems.
High-resolution time series data is difficult to model due to its inherent high dimensionality and complex temporal dependencies.
We propose EnergyDiff, a universal data generation framework for energy time series data.
- Score: 2.677325229270716
- License:
- Abstract: High-resolution time series data are crucial for the operation and planning of energy systems such as electrical power systems and heating systems. Such data often cannot be shared due to privacy concerns, necessitating the use of synthetic data. However, high-resolution time series data is difficult to model due to its inherent high dimensionality and complex temporal dependencies. Leveraging the recent development of generative AI, especially diffusion models, we propose EnergyDiff, a universal data generation framework for energy time series data. EnergyDiff builds on state-of-the-art denoising diffusion probabilistic models, utilizing a proposed denoising network dedicated to high-resolution time series data and introducing a novel Marginal Calibration technique. Our extensive experimental results demonstrate that EnergyDiff achieves significant improvement in capturing the temporal dependencies and marginal distributions compared to baselines, particularly at the 1-minute resolution. Additionally, EnergyDiff consistently generates highquality time series data across diverse energy domains, time resolutions, and at both customer and transformer levels with reduced computational need.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - Creating synthetic energy meter data using conditional diffusion and building metadata [0.0]
The study proposes a conditional diffusion model for generating high-quality synthetic energy data using relevant metadata.
Using a dataset comprising 1,828 power meters from various buildings and countries, this model is compared with traditional methods.
Results demonstrate the proposed diffusion model's superior performance, with a 36% reduction in Frechet Inception Distance (FID) score and a 13% decrease in Kullback-Leibler divergence (KL divergence)
arXiv Detail & Related papers (2024-03-31T01:58:38Z) - Communication-Efficient Design of Learning System for Energy Demand
Forecasting of Electrical Vehicles [5.704507128756151]
Machine learning applications to time series energy utilization forecasting problems are a challenging assignment due to a variety of factors.
We propose a communication-efficient time series forecasting model combining the most recent advancements in transformer architectures.
Our proposed model is shown to have parity in performance while consuming significantly lower data rates during training.
arXiv Detail & Related papers (2023-09-04T00:30:25Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
Real-world tasks such as forecasting weather, electricity consumption, and stock market involve predicting data that vary over time.
Time-series data are generally recorded over a long period of observation with long sequences owing to their periodic characteristics and long-range dependencies over time.
We propose two novel modules, Grouped Self-Attention (GSA) and Compressed Cross-Attention (CCA)
Our proposed model efficiently exhibited reduced computational complexity and performance comparable to or better than existing methods.
arXiv Detail & Related papers (2022-10-02T06:58:49Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Combining Embeddings and Fuzzy Time Series for High-Dimensional Time
Series Forecasting in Internet of Energy Applications [0.0]
Fuzzy Time Series (FTS) models stand out as data-driven non-parametric models of easy implementation and high accuracy.
We present a new methodology for handling high-dimensional time series, by projecting the original high-dimensional data into a low dimensional embedding space.
arXiv Detail & Related papers (2021-12-03T19:50:09Z) - Data-Driven Time Series Reconstruction for Modern Power Systems Research [11.447394702830408]
This paper proposes a data-driven framework for reconstructing high-fidelity time series using publicly-available grid snapshots and historical data published by transmission system operators.
Thereby, synthetic but highly realistic time series data, spanning multiple years with a 5-minute granularity, is generated at the individual component level.
arXiv Detail & Related papers (2021-10-26T15:26:38Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
Heterogeneity and irregularity of multi-source data sets present a significant challenge to time-series analysis.
In this work, we design a novel architecture, PIETS, to model heterogeneous time-series.
We show that PIETS is able to effectively model heterogeneous temporal data and outperforms other state-of-the-art approaches in the prediction task.
arXiv Detail & Related papers (2021-09-30T20:01:19Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.