BayesAdapter: enhanced uncertainty estimation in CLIP few-shot adaptation
- URL: http://arxiv.org/abs/2412.09718v2
- Date: Mon, 13 Jan 2025 14:37:52 GMT
- Title: BayesAdapter: enhanced uncertainty estimation in CLIP few-shot adaptation
- Authors: Pablo Morales-Álvarez, Stergios Christodoulidis, Maria Vakalopoulou, Pablo Piantanida, Jose Dolz,
- Abstract summary: We show that the discriminative performance of state-of-the-art CLIP adapters does not always correlate with their uncertainty estimation capabilities.
We introduce BayesAdapter, which leverages Bayesian inference to estimate a full probability distribution instead of a single point.
Our approach obtains high quality uncertainty estimates in the predictions, standing out in calibration and selective classification.
- Score: 30.435971066422706
- License:
- Abstract: The emergence of large pre-trained vision-language models (VLMs) represents a paradigm shift in machine learning, with unprecedented results in a broad span of visual recognition tasks. CLIP, one of the most popular VLMs, has exhibited remarkable zero-shot and transfer learning capabilities in classification. To transfer CLIP to downstream tasks, adapters constitute a parameter-efficient approach that avoids backpropagation through the large model (unlike related prompt learning methods). However, CLIP adapters have been developed to target discriminative performance, and the quality of their uncertainty estimates has been overlooked. In this work we show that the discriminative performance of state-of-the-art CLIP adapters does not always correlate with their uncertainty estimation capabilities, which are essential for a safe deployment in real-world scenarios. We also demonstrate that one of such adapters is obtained through MAP inference from a more general probabilistic framework. Based on this observation we introduce BayesAdapter, which leverages Bayesian inference to estimate a full probability distribution instead of a single point, better capturing the variability inherent in the parameter space. In a comprehensive empirical evaluation we show that our approach obtains high quality uncertainty estimates in the predictions, standing out in calibration and selective classification. Our code will be publicly available upon acceptance of the paper.
Related papers
- Post-hoc Probabilistic Vision-Language Models [51.12284891724463]
Vision-language models (VLMs) have found remarkable success in classification, retrieval, and generative tasks.
We propose post-hoc uncertainty estimation in VLMs that does not require additional training.
Our results show promise for safety-critical applications of large-scale models.
arXiv Detail & Related papers (2024-12-08T18:16:13Z) - Robust Calibration of Large Vision-Language Adapters [17.583536041845402]
This paper addresses the critical issue of miscalibration in CLIP-based model adaptation.
We empirically demonstrate that popular CLIP adaptation approaches, such as Adapters, Prompt Learning, and Test-Time Adaptation, substantially degrade the calibration capabilities of the zero-shot baseline.
Motivated by these observations, we present a simple and model-agnostic solution to mitigate miscalibration, by scaling the logit range of each sample to its zero-shot prediction logits.
arXiv Detail & Related papers (2024-07-18T15:27:56Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Group-Conditional Conformal Prediction via Quantile Regression
Calibration for Crop and Weed Classification [0.0]
This article presents the conformal prediction framework that provides valid statistical guarantees on the predictive performance of any black box prediction machine.
The framework is exposed with a focus on its practical aspects and special attention accorded to the Adaptive Prediction Sets (APS) approach.
To tackle this shortcoming, group-conditional conformal approaches are presented.
arXiv Detail & Related papers (2023-08-29T08:02:41Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - Augmentation by Counterfactual Explanation -- Fixing an Overconfident
Classifier [11.233334009240947]
A highly accurate but overconfident model is ill-suited for deployment in critical applications such as healthcare and autonomous driving.
This paper proposes an application of counterfactual explanations in fixing an over-confident classifier.
arXiv Detail & Related papers (2022-10-21T18:53:16Z) - Calibrated Selective Classification [34.08454890436067]
We develop a new approach to selective classification in which we propose a method for rejecting examples with "uncertain" uncertainties.
We present a framework for learning selectively calibrated models, where a separate selector network is trained to improve the selective calibration error of a given base model.
We demonstrate the empirical effectiveness of our approach on multiple image classification and lung cancer risk assessment tasks.
arXiv Detail & Related papers (2022-08-25T13:31:09Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Trusted Multi-View Classification [76.73585034192894]
We propose a novel multi-view classification method, termed trusted multi-view classification.
It provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
The proposed algorithm jointly utilizes multiple views to promote both classification reliability and robustness.
arXiv Detail & Related papers (2021-02-03T13:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.