CoDefeater: Using LLMs To Find Defeaters in Assurance Cases
- URL: http://arxiv.org/abs/2407.13717v2
- Date: Fri, 16 Aug 2024 17:43:57 GMT
- Title: CoDefeater: Using LLMs To Find Defeaters in Assurance Cases
- Authors: Usman Gohar, Michael C. Hunter, Robyn R. Lutz, Myra B. Cohen,
- Abstract summary: This paper proposes CoDefeater, an automated process to leverage large language models (LLMs) for finding defeaters.
Initial results on two systems show that LLMs can efficiently find known and unforeseen feasible defeaters to support safety analysts.
- Score: 4.4398355848251745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constructing assurance cases is a widely used, and sometimes required, process toward demonstrating that safety-critical systems will operate safely in their planned environment. To mitigate the risk of errors and missing edge cases, the concept of defeaters - arguments or evidence that challenge claims in an assurance case - has been introduced. Defeaters can provide timely detection of weaknesses in the arguments, prompting further investigation and timely mitigations. However, capturing defeaters relies on expert judgment, experience, and creativity and must be done iteratively due to evolving requirements and regulations. This paper proposes CoDefeater, an automated process to leverage large language models (LLMs) for finding defeaters. Initial results on two systems show that LLMs can efficiently find known and unforeseen feasible defeaters to support safety analysts in enhancing the completeness and confidence of assurance cases.
Related papers
- SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
We propose toolns, a comprehensive framework designed for conducting safety evaluations of MLLMs.
Our framework consists of a comprehensive harmful query dataset and an automated evaluation protocol.
Based on our framework, we conducted large-scale experiments on 15 widely-used open-source MLLMs and 6 commercial MLLMs.
arXiv Detail & Related papers (2024-10-24T17:14:40Z) - Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level [10.658844160259104]
Large language models (LLMs) have demonstrated immense utility across various industries.
As LLMs advance, the risk of harmful outputs increases due to incorrect or malicious instruction prompts.
This paper examines the LLMs' capability to recognize harmful outputs, revealing and quantifying their proficiency in assessing the danger of previous tokens.
arXiv Detail & Related papers (2024-10-09T12:09:30Z) - Automatic Instantiation of Assurance Cases from Patterns Using Large Language Models [6.314768437420443]
Large Language Models (LLMs) can generate assurance cases that comply with specific patterns.
LLMs exhibit potential in the automatic generation of assurance cases, but their capabilities still fall short compared to human experts.
arXiv Detail & Related papers (2024-10-07T20:58:29Z) - Automating Semantic Analysis of System Assurance Cases using Goal-directed ASP [1.2189422792863451]
We present our approach to enhancing Assurance 2.0 with semantic rule-based analysis capabilities.
We examine the unique semantic aspects of assurance cases, such as logical consistency, adequacy, indefeasibility, etc.
arXiv Detail & Related papers (2024-08-21T15:22:43Z) - Nothing in Excess: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
Safety alignment is indispensable for Large language models (LLMs) to defend threats from malicious instructions.
Recent researches reveal safety-aligned LLMs prone to reject benign queries due to the exaggerated safety issue.
We propose a Safety-Conscious Activation Steering (SCANS) method to mitigate the exaggerated safety concerns.
arXiv Detail & Related papers (2024-08-21T10:01:34Z) - InferAct: Inferring Safe Actions for LLM-Based Agents Through Preemptive Evaluation and Human Feedback [70.54226917774933]
This paper introduces InferAct, a novel approach to proactively detect potential errors before risky actions are executed.
InferAct acts as a human proxy, detecting unsafe actions and alerting users for intervention.
Experiments on three widely-used tasks demonstrate the effectiveness of InferAct.
arXiv Detail & Related papers (2024-07-16T15:24:44Z) - A PRISMA-Driven Bibliometric Analysis of the Scientific Literature on Assurance Case Patterns [7.930875992631788]
Assurance cases can be used to prevent system failure.
They are structured arguments that allow arguing and relaying various safety-critical systems' requirements.
arXiv Detail & Related papers (2024-07-06T05:00:49Z) - Jailbreaking as a Reward Misspecification Problem [80.52431374743998]
We propose a novel perspective that attributes this vulnerability to reward misspecification during the alignment process.
We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness.
We present ReMiss, a system for automated red teaming that generates adversarial prompts in a reward-misspecified space.
arXiv Detail & Related papers (2024-06-20T15:12:27Z) - Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations [76.19419888353586]
Large language models (LLMs) are susceptible to a variety of risks, from non-faithful output to biased and toxic generations.
We present our efforts to create and deploy a library of detectors: compact and easy-to-build classification models that provide labels for various harms.
arXiv Detail & Related papers (2024-03-09T21:07:16Z) - On Prompt-Driven Safeguarding for Large Language Models [172.13943777203377]
We find that in the representation space, the input queries are typically moved by safety prompts in a "higher-refusal" direction.
Inspired by these findings, we propose a method for safety prompt optimization, namely DRO.
Treating a safety prompt as continuous, trainable embeddings, DRO learns to move the queries' representations along or opposite the refusal direction, depending on their harmfulness.
arXiv Detail & Related papers (2024-01-31T17:28:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.