論文の概要: Generative Model for Small Molecules with Latent Space RL Fine-Tuning to Protein Targets
- arxiv url: http://arxiv.org/abs/2407.13780v1
- Date: Tue, 2 Jul 2024 16:01:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-28 18:48:53.823364
- Title: Generative Model for Small Molecules with Latent Space RL Fine-Tuning to Protein Targets
- Title(参考訳): 遅延空間RL微細構造を持つ小分子のタンパク質標的への生成モデル
- Authors: Ulrich A. Mbou Sob, Qiulin Li, Miguel Arbesú, Oliver Bent, Andries P. Smit, Arnu Pretorius,
- Abstract要約: トレーニング中に発生する無効な断片化分子の数を減らすため,SAFEに改良を加えた。
本モデルでは, 潜在空間からのサンプリングにより, 有効度90%, フラグメンテーション率1%の新規分子を生成できる。
- 参考スコア(独自算出の注目度): 4.047608146173188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A specific challenge with deep learning approaches for molecule generation is generating both syntactically valid and chemically plausible molecular string representations. To address this, we propose a novel generative latent-variable transformer model for small molecules that leverages a recently proposed molecular string representation called SAFE. We introduce a modification to SAFE to reduce the number of invalid fragmented molecules generated during training and use this to train our model. Our experiments show that our model can generate novel molecules with a validity rate > 90% and a fragmentation rate < 1% by sampling from a latent space. By fine-tuning the model using reinforcement learning to improve molecular docking, we significantly increase the number of hit candidates for five specific protein targets compared to the pre-trained model, nearly doubling this number for certain targets. Additionally, our top 5% mean docking scores are comparable to the current state-of-the-art (SOTA), and we marginally outperform SOTA on three of the five targets.
- Abstract(参考訳): 分子生成のためのディープラーニングアプローチにおける特定の課題は、構文的に有効かつ化学的に妥当な分子文字列表現を生成することである。
そこで本研究では,SAFEと呼ばれる分子列表現を利用した,小型分子に対する新規な潜在変数トランスフォーマモデルを提案する。
トレーニング中に発生する無効な断片化分子の数を減らすため,SAFEの修正を導入し,これをモデルトレーニングに利用した。
実験の結果, 潜在空間からのサンプリングにより, 有効度90%, フラグメンテーション率1%の新規分子を生成できることがわかった。
分子ドッキングを改善するために強化学習を用いてモデルを微調整することにより、トレーニング済みモデルと比較して5つの特定のタンパク質標的に対するヒット候補数を有意に増加させ、特定のターゲットに対してほぼ倍増させる。
さらに、私たちの上位5%はドッキングスコアが現在のSOTA(State-of-the-art)と同等であり、5つのターゲットのうち3つでSOTAを上回っています。
関連論文リスト
- Molecule Design by Latent Prompt Transformer [76.2112075557233]
本研究は、分子設計の課題を条件付き生成モデリングタスクとしてフレーミングすることによって検討する。
本研究では,(1)学習可能な事前分布を持つ潜伏ベクトル,(2)プロンプトとして潜伏ベクトルを用いる因果トランスフォーマーに基づく分子生成モデル,(3)潜在プロンプトを用いた分子の目標特性および/または制約値を予測する特性予測モデルからなる新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-02-27T03:33:23Z) - FREED++: Improving RL Agents for Fragment-Based Molecule Generation by
Thorough Reproduction [33.57089414199478]
強化学習(Reinforcement Learning, RL)はドッキングスコア(DS)を報奨として分子を生成するための有望なアプローチとして登場した。
我々はFREED(arXiv:2110.01219)と呼ばれる分子生成の最近のモデルを再現し、精査し、改善する
論文 参考訳(メタデータ) (2024-01-18T09:54:19Z) - DiffDTM: A conditional structure-free framework for bioactive molecules
generation targeted for dual proteins [35.72694124335747]
DiffDTMは、二重ターゲット分子生成のための拡散モデルに基づく条件付き構造自由な深層生成モデルである。
我々は、DiffDTMが薬物様、合成可能、新規、高結合性アフィニティ分子を生成できることを実証するために、総合的な多視点実験を行った。
実験結果から,DiffDTMは見知らぬ二重ターゲットに容易に接続して生体活性分子を生成できることが示唆された。
論文 参考訳(メタデータ) (2023-06-24T13:08:55Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - SILVR: Guided Diffusion for Molecule Generation [0.0]
本稿では,既存の生成モデルを再学習せずに条件付けする機械学習手法を提案する。
このモデルでは、フラグメントヒットに基づいてタンパク質の結合部位に適合する新しい分子を生成することができる。
我々は、中程度のSILVR速度により、元の断片と類似した形状の新しい分子を生成できることを示した。
論文 参考訳(メタデータ) (2023-04-21T11:47:38Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Fragment-based molecular generative model with high generalization
ability and synthetic accessibility [0.0]
本稿では, ターゲット特性を持つ新規分子を設計するフラグメントに基づく分子生成モデルを提案する。
我々のモデルの重要な特徴は、プロパティ制御とフラグメントタイプの観点からの高度な一般化能力である。
モデルでは,複数のターゲット特性を同時に制御した分子を高い成功率で生成できることを示す。
論文 参考訳(メタデータ) (2021-11-25T04:44:37Z) - Hit and Lead Discovery with Explorative RL and Fragment-based Molecule
Generation [34.26748101294543]
ドッキングスコアが大きい薬理学的に許容される分子を生成する新しい枠組みを提案する。
本手法は, 生成した分子を, 現実的で有資格な化学空間に限定し, 薬物発見のための空間を効果的に探索する。
提案モデルでは,既存の手法と比較して高品質な分子を生成できる一方で,3つの目標のうち2つの目標に対して最先端の性能を達成できる。
論文 参考訳(メタデータ) (2021-10-04T07:21:00Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
分子表現学習のための新しいフレームワークGROVERを提案する。
GROVERは、分子の豊富な構造的および意味的な情報を、巨大な未標識分子データから学習することができる。
分子表現学習において、最大のGNNであり、最大のトレーニングデータセットである、1000万個の未標識分子に1億のパラメータを持つGROVERを事前訓練します。
論文 参考訳(メタデータ) (2020-06-18T08:37:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。