論文の概要: SILVR: Guided Diffusion for Molecule Generation
- arxiv url: http://arxiv.org/abs/2304.10905v1
- Date: Fri, 21 Apr 2023 11:47:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-24 14:52:46.625140
- Title: SILVR: Guided Diffusion for Molecule Generation
- Title(参考訳): SILVR: 分子生成のための誘導拡散
- Authors: Nicholas T. Runcie, Antonia S. J. S. Mey
- Abstract要約: 本稿では,既存の生成モデルを再学習せずに条件付けする機械学習手法を提案する。
このモデルでは、フラグメントヒットに基づいてタンパク質の結合部位に適合する新しい分子を生成することができる。
我々は、中程度のSILVR速度により、元の断片と類似した形状の新しい分子を生成できることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computationally generating novel synthetically accessible compounds with high
affinity and low toxicity is a great challenge in drug design. Machine-learning
models beyond conventional pharmacophoric methods have shown promise in
generating novel small molecule compounds, but require significant tuning for a
specific protein target. Here, we introduce a method called selective iterative
latent variable refinement (SILVR) for conditioning an existing diffusion-based
equivariant generative model without retraining. The model allows the
generation of new molecules that fit into a binding site of a protein based on
fragment hits. We use the SARS-CoV-2 Main protease fragments from Diamond
X-Chem that form part of the COVID Moonshot project as a reference dataset for
conditioning the molecule generation. The SILVR rate controls the extent of
conditioning and we show that moderate SILVR rates make it possible to generate
new molecules of similar shape to the original fragments, meaning that the new
molecules fit the binding site without knowledge of the protein. We can also
merge up to 3 fragments into a new molecule without affecting the quality of
molecules generated by the underlying generative model. Our method is
generalizable to any protein target with known fragments and any
diffusion-based model for molecule generation.
- Abstract(参考訳): 高い親和性と毒性の低い新規な合成可能な化合物を計算的に生成することは、医薬品設計において大きな課題である。
従来の製薬法を超越した機械学習モデルは、新しい小さな分子化合物を生成することに有望であるが、特定のタンパク質標的に対してかなりのチューニングを必要とする。
本稿では,既存の拡散型同変生成モデルを再学習せずに条件付けするためのSILVR法を提案する。
このモデルでは、フラグメントヒットに基づいてタンパク質の結合部位に適合する新しい分子を生成することができる。
我々は、分子生成の条件付けのための基準データセットとして、COVID Moonshotプロジェクトの一部を構成するDiamond X-ChemのSARS-CoV-2主プロテアーゼ断片を使用する。
SILVR速度は条件付けの程度を制御し、中程度のSILVR速度は元の断片と類似した形の新しい分子を生成できることを示し、新しい分子はタンパク質を知らずに結合部位に適合する。
生成モデルによって生成された分子の品質に影響を与えることなく、最大3個の断片を新しい分子にマージすることもできる。
本手法は既知のフラグメントを持つ任意のタンパク質ターゲットと分子生成のための拡散ベースのモデルに一般化できる。
関連論文リスト
- LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
テキスト条件付き分子生成のための遅延拡散モデル LDMol を提案する。
LDMolは、学習可能で構造的に有意な特徴空間を生成する分子オートエンコーダを含む。
我々は,LDMolを分子間検索やテキスト誘導分子編集などの下流タスクに適用できることを示す。
論文 参考訳(メタデータ) (2024-05-28T04:59:13Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
構造に基づく薬物設計のための拡散型フラグメントワイド自己回帰生成モデル(SBDD)を提案する。
我々はまず,分子の局所構造の整合性を保持する共形モチーフという新しい分子組立戦略を設計する。
次に、タンパク質-リガンド複合体とSE(3)等価な畳み込みネットワークとの相互作用をエンコードし、拡散モデルを用いて分子モチーフ・バイ・モチーフを生成する。
論文 参考訳(メタデータ) (2024-04-02T14:44:02Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - FREED++: Improving RL Agents for Fragment-Based Molecule Generation by
Thorough Reproduction [33.57089414199478]
強化学習(Reinforcement Learning, RL)はドッキングスコア(DS)を報奨として分子を生成するための有望なアプローチとして登場した。
我々はFREED(arXiv:2110.01219)と呼ばれる分子生成の最近のモデルを再現し、精査し、改善する
論文 参考訳(メタデータ) (2024-01-18T09:54:19Z) - DiffDTM: A conditional structure-free framework for bioactive molecules
generation targeted for dual proteins [35.72694124335747]
DiffDTMは、二重ターゲット分子生成のための拡散モデルに基づく条件付き構造自由な深層生成モデルである。
我々は、DiffDTMが薬物様、合成可能、新規、高結合性アフィニティ分子を生成できることを実証するために、総合的な多視点実験を行った。
実験結果から,DiffDTMは見知らぬ二重ターゲットに容易に接続して生体活性分子を生成できることが示唆された。
論文 参考訳(メタデータ) (2023-06-24T13:08:55Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
ポケット特異的分子生成とエラボレーションのための機能群に基づく拡散モデルD3FGを提案する。
D3FGは分子を、剛体として定義される官能基と質量点としてのリンカーの2つのカテゴリに分解する。
実験では, より現実的な3次元構造, タンパク質標的に対する競合親和性, 薬物特性の良好な分子を生成できる。
論文 参考訳(メタデータ) (2023-05-30T06:41:20Z) - Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design [82.23006955069229]
分子リンカ設計のためのE(3)等価な3次元拡散モデルDiffLinkerを提案する。
我々のモデルは、欠落した原子を中間に配置し、初期フラグメントを全て組み込んだ分子を設計する。
DiffLinkerは、より多種多様な合成可能な分子を生成する標準データセット上で、他の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T09:13:37Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Fragment-based molecular generative model with high generalization
ability and synthetic accessibility [0.0]
本稿では, ターゲット特性を持つ新規分子を設計するフラグメントに基づく分子生成モデルを提案する。
我々のモデルの重要な特徴は、プロパティ制御とフラグメントタイプの観点からの高度な一般化能力である。
モデルでは,複数のターゲット特性を同時に制御した分子を高い成功率で生成できることを示す。
論文 参考訳(メタデータ) (2021-11-25T04:44:37Z) - De Novo Molecular Generation with Stacked Adversarial Model [24.83456726428956]
近年, ド・ノボの薬物設計に期待できるアプローチとして, 条件付き生成逆数モデルが提案されている。
本稿では、2つのモデルを重ね合わせることで、既存の対向オートエンコーダモデルを拡張する新しい生成モデルを提案する。
我々の積み重ねられたアプローチは、既知の薬物とより類似した分子と同様に、より有効な分子を生成する。
論文 参考訳(メタデータ) (2021-10-24T14:23:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。