論文の概要: The Honorific Effect: Exploring the Impact of Japanese Linguistic Formalities on AI-Generated Physics Explanations
- arxiv url: http://arxiv.org/abs/2407.13787v2
- Date: Wed, 24 Jul 2024 04:57:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 18:12:28.343367
- Title: The Honorific Effect: Exploring the Impact of Japanese Linguistic Formalities on AI-Generated Physics Explanations
- Title(参考訳): 名誉効果:日本語の言語形式がAI生成物理説明に及ぼす影響を探る
- Authors: Keisuke Sato,
- Abstract要約: 本研究では,モーメントの保存則を説明する際に,日本語の敬意が大規模言語モデル(LLM)の応答に与える影響について検討した。
我々は、ChatGPT、Coral、Geminiのバリエーションを含む6つの最先端AIモデルの出力を14種類の名誉形式を用いて分析した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates the influence of Japanese honorifics on the responses of large language models (LLMs) when explaining the law of conservation of momentum. We analyzed the outputs of six state-of-the-art AI models, including variations of ChatGPT, Coral, and Gemini, using 14 different honorific forms. Our findings reveal that honorifics significantly affect the quality, consistency, and formality of AI-generated responses, demonstrating LLMs' ability to interpret and adapt to social context cues embedded in language. Notable variations were observed across different models, with some emphasizing historical context and derivations, while others focused on intuitive explanations. The study highlights the potential for using honorifics to adjust the depth and complexity of AI-generated explanations in educational contexts. Furthermore, the responsiveness of AI models to cultural linguistic elements underscores the importance of considering cultural factors in AI development for educational applications. These results open new avenues for research in AI-assisted education and cultural adaptation in AI systems, with significant implications for personalizing learning experiences and developing culturally sensitive AI tools for global education.
- Abstract(参考訳): 本研究では,モーメントの保存則を説明する際に,日本語の敬意が大規模言語モデル(LLM)の応答に与える影響について検討した。
我々は、ChatGPT、Coral、Geminiのバリエーションを含む6つの最先端AIモデルの出力を14種類の名誉形式を用いて分析した。
以上の結果から,名誉はAI生成応答の品質,一貫性,形式性に大きく影響し,LLMが言語に埋め込まれた社会的文脈に適応する能力を示すことが明らかとなった。
様々なモデルで顕著なバリエーションが観察され、いくつかは歴史的文脈と導出を強調し、もう一つは直感的な説明に焦点を当てた。
この研究は、教育的文脈におけるAI生成の説明の深さと複雑さを調整するために名誉の使用の可能性を強調している。
さらに、文化言語要素に対するAIモデルの応答性は、教育応用のためのAI開発における文化的要因を検討することの重要性を浮き彫りにしている。
これらの結果は、AI支援教育とAIシステムにおける文化的適応の研究のための新たな道を開き、学習経験をパーソナライズし、グローバル教育のための文化に敏感なAIツールを開発するために重要な意味を持つ。
関連論文リスト
- Decoding AI and Human Authorship: Nuances Revealed Through NLP and Statistical Analysis [0.0]
本研究では,AIが生成したテキストと人間が作成したテキストの微妙な相違について検討する。
本研究は,人文・AI生成テキストに固有の言語特性,創造性パターン,潜在的なバイアスについて検討した。
論文 参考訳(メタデータ) (2024-07-15T18:09:03Z) - OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI [73.75520820608232]
我々は,11,163のバイリンガル問題を含む,テキストのみとインターリーブされたテキストイメージのモダリティを紹介する。
これらの課題には、7つのフィールドと62の国際オリンピック大会にわたる幅広い規律が含まれており、データ漏洩について厳格に調査されている。
我々の評価によると、GPT-4oのような先進モデルでさえ、複雑な推論とマルチモーダル統合における現在のAI制限を反映して、全体的な精度は39.97%しか達成していない。
論文 参考訳(メタデータ) (2024-06-18T16:20:53Z) - Generative AI in Education: A Study of Educators' Awareness, Sentiments, and Influencing Factors [2.217351976766501]
本研究は,AI言語モデルに対する教員の経験と態度について考察する。
学習スタイルと生成AIに対する態度の相関は見つからない。
CS教育者は、生成するAIツールの技術的理解にはるかに自信を持っているが、AI生成された仕事を検出する能力にこれ以上自信がない。
論文 参考訳(メタデータ) (2024-03-22T19:21:29Z) - How Culture Shapes What People Want From AI [0.0]
文化的に多様なグループの視点をAI開発に組み込む必要がある。
我々は,AIの主流となるビジョンを拡張し,再定義し,再構築することを目的とした,研究のための新しい概念的枠組みを提案する。
論文 参考訳(メタデータ) (2024-03-08T07:08:19Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
我々は、生成AIと適応学習の交差研究に光を当てた。
我々は、この連合が教育における次の段階の学習形式の発展に大きく貢献するだろうと論じている。
論文 参考訳(メタデータ) (2024-02-02T23:54:51Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
マルチモーダル人工知能(AI)アプローチは、教育的文脈における人工知能(AGI)の実現に向けた道を歩んでいる。
この研究は、認知フレームワーク、高度な知識表現、適応学習機構、多様なマルチモーダルデータソースの統合など、AGIの重要な側面を深く掘り下げている。
本稿は、AGI開発における今後の方向性と課題に関する洞察を提供する、教育におけるマルチモーダルAIの役割の意味についても論じる。
論文 参考訳(メタデータ) (2023-12-10T23:32:55Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - MAILS -- Meta AI Literacy Scale: Development and Testing of an AI
Literacy Questionnaire Based on Well-Founded Competency Models and
Psychological Change- and Meta-Competencies [6.368014180870025]
アンケートはモジュラー(すなわち、互いに独立して使用できる異なるファセットを含む)であり、プロフェッショナルな生活に柔軟に適用できるべきである。
我々は、AIリテラシーの異なる側面を表すために、Ngと同僚がAIリテラシーを概念化した60項目を作成した。
AIに関する問題解決、学習、感情制御などの心理的能力を表す12項目が追加されている。
論文 参考訳(メタデータ) (2023-02-18T12:35:55Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。