論文の概要: Optimized Quantum Simulation Algorithms for Scalar Quantum Field Theories
- arxiv url: http://arxiv.org/abs/2407.13819v1
- Date: Thu, 18 Jul 2024 18:00:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 21:39:27.348857
- Title: Optimized Quantum Simulation Algorithms for Scalar Quantum Field Theories
- Title(参考訳): スカラー量子場理論のための最適化量子シミュレーションアルゴリズム
- Authors: Andrew Hardy, Priyanka Mukhopadhyay, M. Sohaib Alam, Robert Konik, Layla Hormozi, Eleanor Rieffel, Stuart Hadfield, João Barata, Raju Venugopalan, Dmitri E. Kharzeev, Nathan Wiebe,
- Abstract要約: 量子コンピュータ上でのスカラー場理論の実用的なシミュレーション手法を提案する。
本手法はハミルトニアンの各種耐故障シミュレーションアルゴリズムを用いて実装する。
どちらの場合も、バウンダリが物理的に意味のあるシミュレーションを4つの物理量子ビット(106ドル)と1012ドル(T$-gate)の順番で行うことを示唆している。
- 参考スコア(独自算出の注目度): 0.3394351835510634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We provide practical simulation methods for scalar field theories on a quantum computer that yield improved asymptotics as well as concrete gate estimates for the simulation and physical qubit estimates using the surface code. We achieve these improvements through two optimizations. First, we consider a different approach for estimating the elements of the S-matrix. This approach is appropriate in general for 1+1D and for certain low-energy elastic collisions in higher dimensions. Second, we implement our approach using a series of different fault-tolerant simulation algorithms for Hamiltonians formulated both in the field occupation basis and field amplitude basis. Our algorithms are based on either second-order Trotterization or qubitization. The cost of Trotterization in occupation basis scales as $\widetilde{O}(\lambda N^7 |\Omega|^3/(M^{5/2} \epsilon^{3/2})$ where $\lambda$ is the coupling strength, $N$ is the occupation cutoff $|\Omega|$ is the volume of the spatial lattice, $M$ is the mass of the particles and $\epsilon$ is the uncertainty in the energy calculation used for the $S$-matrix determination. Qubitization in the field basis scales as $\widetilde{O}(|\Omega|^2 (k^2 \Lambda +kM^2)/\epsilon)$ where $k$ is the cutoff in the field and $\Lambda$ is a scaled coupling constant. We find in both cases that the bounds suggest physically meaningful simulations can be performed using on the order of $4\times 10^6$ physical qubits and $10^{12}$ $T$-gates which corresponds to roughly one day on a superconducting quantum computer with surface code and a cycle time of 100 ns, placing simulation of scalar field theory within striking distance of the gate counts for the best available chemistry simulation results.
- Abstract(参考訳): 本研究では, 量子コンピュータ上でのスカラー場理論の実用的なシミュレーション手法を提案する。
これらの改善は2つの最適化によって達成する。
まず、S行列の要素を推定する別のアプローチを考える。
このアプローチは一般に1+1Dと高次元のある種の低エネルギー弾性衝突に適している。
第2に,フィールド占有ベースとフィールド振幅ベースの両方で定式化されたハミルトニアンの一連のフォールトトレラントシミュレーションアルゴリズムを用いて,本手法を実装した。
我々のアルゴリズムは2階のトロッタライズまたはキュービットライズに基づいている。
職業ベースでのトロッター化のコストは、$\widetilde{O}(\lambda N^7 |\Omega|^3/(M^{5/2} \epsilon^{3/2})$ ここで、$\lambda$は結合強度、$N$は占有カットオフ$|\Omega|$は空間格子の体積、$M$は粒子の質量、$\epsilon$は$S$-行列決定に使用されるエネルギー計算の不確実性である。
場の量子化は$\widetilde{O}(|\Omega|^2 (k^2 \Lambda +kM^2)/\epsilon)$ ここで$k$はフィールドのカットオフ、$\Lambda$はスケールされたカップリング定数である。
いずれの場合も, 物理的に有意なシミュレーションは, 4 倍の物理量子ビット 10^6$ および 10^{12}$ $T$-gates の順で行うことができ, 表面コードとサイクル時間 100 ns の超伝導量子コンピュータ上では約1日に相当する。
関連論文リスト
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
一般化されたボトルネック補題を用いて、これらのツールの量子一般化を示す。
この補題は、古典的なハミング距離に類似する距離の量子測度に焦点を当てるが、一意に量子原理に根ざしている。
サブ線形障壁でさえも、ファインマン・カック法を用いて古典的から量子的なものを持ち上げて、厳密な下界の$T_mathrmmix = 2Omega(nalpha)$を確立する。
論文 参考訳(メタデータ) (2024-11-06T22:51:27Z) - Efficient Quantum Simulation Algorithms in the Path Integral Formulation [0.5729426778193399]
我々は、経路積分定式化のハミルトン版に基づく2つの新しい量子アルゴリズムと、 $fracm2dotx2 - V(x)$ という形でラグランジアンに対して提供する。
我々のラグランジアンシミュレーションアルゴリズムは、連続極限において$D+1$次元の$eta$粒子を持つシステムに対して、$V(x)$が有界であれば$widetildeO(eta D t2/epsilon)$としてスケールする離散ラグランジアンを演算するオラクルに対して、多数のクエリを必要とすることを示す。
論文 参考訳(メタデータ) (2024-05-11T15:48:04Z) - Hamiltonian simulation for low-energy states with optimal time dependence [45.02537589779136]
低エネルギー部分空間内のハミルトン$H$の下で時間発展をシミュレートする作業を考える。
我々は,$O(tsqrtlambdaGamma + sqrtlambda/Gammalog (1/epsilon))$クエリを,任意の$Gamma$に対するブロックエンコーディングに使用する量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-04T17:58:01Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
我々は、$m=mathcalO(nk)$バイナリ変数を$n$ qubitsだけを使って最適化するために、$k>1$で可変量子ソルバを導入する。
我々は,特定の量子ビット効率の符号化が,バレン高原の超ポリノミウム緩和を内蔵特徴としてもたらすことを解析的に証明した。
論文 参考訳(メタデータ) (2024-01-17T18:59:38Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
我々は最近,誤りを軽減した量子回路を用いてエミュレートされた127量子ビットキックド・イジングモデルの古典的シミュレーションを行った。
提案手法はハイゼンベルク図の射影的絡み合ったペア作用素(PEPO)に基づいている。
我々はクリフォード展開理論を開発し、正確な期待値を計算し、それらをアルゴリズムの評価に利用する。
論文 参考訳(メタデータ) (2023-08-06T10:24:23Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
相補的な合成条件に基づく2つの難解なミラー降下アルゴリズムを導入する。
注目すべきは、どちらのアルゴリズムも、目的関数のリプシッツ定数や滑らかさに関する事前の知識なしで機能する。
本稿では,大規模半確定プログラム上での手法の効率性とロバスト性を示す。
論文 参考訳(メタデータ) (2023-06-30T08:34:29Z) - Quantum Simulation of the First-Quantized Pauli-Fierz Hamiltonian [0.5097809301149342]
我々は、我々の分割と形式主義の征服を通じて、大きな$Lambda$の量子化よりも優れたスケーリングと量子化を得られることを示す。
また,マルチコントロールされたXゲート群を実装する新しい方法を含む,ゲート最適化のための新しいアルゴリズムおよび回路レベル技術も提供する。
論文 参考訳(メタデータ) (2023-06-19T23:20:30Z) - Quantum simulation of real-space dynamics [7.143485463760098]
実空間力学のための量子アルゴリズムの体系的研究を行う。
我々は、量子化学のより高速な実空間シミュレーションを含む、いくつかの計算問題に応用する。
論文 参考訳(メタデータ) (2022-03-31T13:01:51Z) - How to simulate quantum measurement without computing marginals [3.222802562733787]
量子状態$psi$を標準で計算するためのアルゴリズムを,古典的に記述し,解析する。
我々のアルゴリズムはサンプリングタスクを$n$-qubit状態のポリ(n)$振幅の計算に還元する。
論文 参考訳(メタデータ) (2021-12-15T21:44:05Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
NISQとフォールトトレラントの両方の設定で格子シュウィンガーモデルをシミュレートするために、スケーラブルで明示的なデジタル量子アルゴリズムを提供する。
格子単位において、結合定数$x-1/2$と電場カットオフ$x-1/2Lambda$を持つ$N/2$物理サイト上のシュウィンガーモデルを求める。
NISQと耐故障性の両方でコストがかかるオブザーバブルを、単純なオブザーバブルとして推定し、平均ペア密度を推定する。
論文 参考訳(メタデータ) (2020-02-25T19:18:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。