Correlation Hyperspectral Imaging
- URL: http://arxiv.org/abs/2407.13879v1
- Date: Thu, 18 Jul 2024 19:54:44 GMT
- Title: Correlation Hyperspectral Imaging
- Authors: Gianlorenzo Massaro, Francesco V. Pepe, Milena D'Angelo,
- Abstract summary: Hyperspectral imaging aims at providing information on both the spatial and the spectral distribution of light, with high resolution.
We address this limitation by exploiting light intensity correlations, which are shown to enable overcoming the typical downsides of traditional hyperspectral imaging techniques.
The enabled combination of high spatial and spectral resolution, high speed, and insensitivity to undesired spectral features shall lead to a paradigm change in hyperspectral imaging devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral imaging aims at providing information on both the spatial and the spectral distribution of light, with high resolution. However, state-of-the-art protocols are characterized by an intrinsic trade-off imposing to sacrifice either resolution or image acquisition speed. We address this limitation by exploiting light intensity correlations, which are shown to enable overcoming the typical downsides of traditional hyperspectral imaging techniques, both scanning and snapshot. The proposed approach also opens possibilities that are not otherwise achievable, such as sharper imaging and natural filtering of broadband spectral components that would otherwise hide the spectrum of interest. The enabled combination of high spatial and spectral resolution, high speed, and insensitivity to undesired spectral features shall lead to a paradigm change in hyperspectral imaging devices and open-up new application scenarios.
Related papers
- HyperColorization: Propagating spatially sparse noisy spectral clues for reconstructing hyperspectral images [2.7214317850962106]
We present a colorization to reconstruct hyperspectral images from a grayscale guide image and spatially sparse spectral clues.
Our algorithm generalizes to varying spectral dimensions for hyperspectral images, and show that colorizing in a low-rank space reduces compute time and the impact of shot noise.
arXiv Detail & Related papers (2024-03-18T16:33:43Z) - Super-resolution of ultrafast pulses via spectral inversion [0.0]
We experimentally demonstrate a spectroscopic super-resolution method aimed at broadband light (10s to 100s of GHz)
We study the paradigmatic problem of estimating a small separation between two incoherent spectral features of equal brightness, with a small number of photons per coherence time.
The setup is based on an actively stabilized Mach-Zehnder-type interferometer with electro-optic time lenses and passive spectral dispersers implementing the inversion.
arXiv Detail & Related papers (2024-03-18T12:21:37Z) - SSIF: Learning Continuous Image Representation for Spatial-Spectral
Super-Resolution [73.46167948298041]
We propose a neural implicit model that represents an image as a function of both continuous pixel coordinates in the spatial domain and continuous wavelengths in the spectral domain.
We show that SSIF generalizes well to both unseen spatial resolutions and spectral resolutions.
It can generate high-resolution images that improve the performance of downstream tasks by 1.7%-7%.
arXiv Detail & Related papers (2023-09-30T15:23:30Z) - Periodic patterns for resolution limit characterization of correlation
plenoptic imaging [0.0]
correlation of the-dimensional-temporal correlations of light provides an interesting tool to overcome the traditional limitations of standard imaging.
Using plenoptic imaging, one can detect both the spatial distribution and direction of light in a scene, pushing both resolution and depth of field to the fundamental limit imposed by wave-optics.
arXiv Detail & Related papers (2023-09-01T15:45:04Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - High Spectral Spatial Resolution Synthetic HyperSpectral Dataset form
multi-source fusion [7.249349307341409]
This research paper introduces a synthetic hyperspectral dataset that combines high spectral and spatial resolution imaging.
The proposed dataset addresses this limitation by leveraging three modalities: RGB, push-broom visible hyperspectral camera, and snapshot infrared hyperspectral camera.
arXiv Detail & Related papers (2023-06-25T11:17:12Z) - Dual-Stage Approach Toward Hyperspectral Image Super-Resolution [21.68598210467761]
We propose a new structure for hyperspectral image super-resolution (DualSR)
In coarse stage, five bands with high similarity in a certain spectral range are divided into three groups, and the current band is guided to study the potential knowledge.
In fine stage, an enhanced back-projection method via spectral angle constraint is developed to learn the content of spatial-spectral consistency.
arXiv Detail & Related papers (2022-04-09T04:36:44Z) - Spectral Splitting and Aggregation Network for Hyperspectral Face
Super-Resolution [82.59267937569213]
High-resolution (HR) hyperspectral face image plays an important role in face related computer vision tasks under uncontrolled conditions.
In this paper, we investigate how to adapt the deep learning techniques to hyperspectral face image super-resolution.
We present a spectral splitting and aggregation network (SSANet) for HFSR with limited training samples.
arXiv Detail & Related papers (2021-08-31T02:13:00Z) - Correlation Plenoptic Imaging between Arbitrary Planes [52.77024349608834]
We show that the protocol enables to change the focused planes, in post-processing, and to achieve an unprecedented combination of image resolution and depth of field.
Results lead the way towards the development of compact designs for correlation plenoptic imaging devices based on chaotic light, as well as high-SNR plenoptic imaging devices based on entangled photon illumination.
arXiv Detail & Related papers (2020-07-23T14:26:14Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.