Exploring the Evidence-Based Beliefs and Behaviors of LLM-Based Programming Assistants
- URL: http://arxiv.org/abs/2407.13900v1
- Date: Thu, 18 Jul 2024 21:06:39 GMT
- Title: Exploring the Evidence-Based Beliefs and Behaviors of LLM-Based Programming Assistants
- Authors: Chris Brown, Jason Cusati,
- Abstract summary: This study investigates the beliefs and behaviors of large language models (LLMs) used to support software development tasks.
Our findings show that LLM-based programming assistants have ambiguous beliefs regarding research claims, lack credible evidence to support responses, and are incapable of adopting practices demonstrated by empirical SE research to support development tasks.
- Score: 2.3480418671346164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent innovations in artificial intelligence (AI), primarily powered by large language models (LLMs), have transformed how programmers develop and maintain software -- leading to new frontiers in software engineering (SE). The advanced capabilities of LLM-based programming assistants to support software development tasks have led to a rise in the adoption of LLMs in SE. However, little is known about the evidenced-based practices, tools and processes verified by research findings, supported and adopted by AI programming assistants. To this end, our work conducts a preliminary evaluation exploring the beliefs and behaviors of LLM used to support software development tasks. We investigate 17 evidence-based claims posited by empirical SE research across five LLM-based programming assistants. Our findings show that LLM-based programming assistants have ambiguous beliefs regarding research claims, lack credible evidence to support responses, and are incapable of adopting practices demonstrated by empirical SE research to support development tasks. Based on our results, we provide implications for practitioners adopting LLM-based programming assistants in development contexts and shed light on future research directions to enhance the reliability and trustworthiness of LLMs -- aiming to increase awareness and adoption of evidence-based SE research findings in practice.
Related papers
- From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future [15.568939568441317]
We investigate the current practice and solutions for large language models (LLMs) and LLM-based agents for software engineering.
In particular we summarise six key topics: requirement engineering, code generation, autonomous decision-making, software design, test generation, and software maintenance.
We discuss the models and benchmarks used, providing a comprehensive analysis of their applications and effectiveness in software engineering.
arXiv Detail & Related papers (2024-08-05T14:01:15Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.
It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.
Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - VURF: A General-purpose Reasoning and Self-refinement Framework for Video Understanding [65.12464615430036]
This paper introduces a Video Understanding and Reasoning Framework (VURF) based on the reasoning power of Large Language Models (LLMs)
Ours is a novel approach to extend the utility of LLMs in the context of video tasks.
We harness their contextual learning capabilities to generate executable visual programs for video understanding.
arXiv Detail & Related papers (2024-03-21T18:00:00Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - An Empirical Study on Usage and Perceptions of LLMs in a Software
Engineering Project [1.433758865948252]
Large Language Models (LLMs) represent a leap in artificial intelligence, excelling in tasks using human language(s)
In this paper, we analyze the AI-generated code, prompts used for code generation, and the human intervention levels to integrate the code into the code base.
Our findings suggest that LLMs can play a crucial role in the early stages of software development.
arXiv Detail & Related papers (2024-01-29T14:32:32Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Experiential Co-Learning of Software-Developing Agents [83.34027623428096]
Large language models (LLMs) have brought significant changes to various domains, especially in software development.
We introduce Experiential Co-Learning, a novel LLM-agent learning framework.
Experiments demonstrate that the framework enables agents to tackle unseen software-developing tasks more effectively.
arXiv Detail & Related papers (2023-12-28T13:50:42Z) - Redefining Developer Assistance: Through Large Language Models in Software Ecosystem [0.5580128181112308]
We introduce DevAssistLlama, a model developed through instruction tuning, to assist developers in processing software-related natural language queries.
DevAssistLlama is particularly adept at handling intricate technical documentation, enhancing developer capability in software specific tasks.
arXiv Detail & Related papers (2023-12-09T18:02:37Z) - Software Testing with Large Language Models: Survey, Landscape, and
Vision [32.34617250991638]
Pre-trained large language models (LLMs) have emerged as a breakthrough technology in natural language processing and artificial intelligence.
This paper provides a comprehensive review of the utilization of LLMs in software testing.
arXiv Detail & Related papers (2023-07-14T08:26:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.