RT-Pose: A 4D Radar Tensor-based 3D Human Pose Estimation and Localization Benchmark
- URL: http://arxiv.org/abs/2407.13930v1
- Date: Thu, 18 Jul 2024 22:46:35 GMT
- Title: RT-Pose: A 4D Radar Tensor-based 3D Human Pose Estimation and Localization Benchmark
- Authors: Yuan-Hao Ho, Jen-Hao Cheng, Sheng Yao Kuan, Zhongyu Jiang, Wenhao Chai, Hsiang-Wei Huang, Chih-Lung Lin, Jenq-Neng Hwang,
- Abstract summary: This paper presents a Radar-based human pose (RT-Pose) dataset and an open-source benchmarking framework.
The RT-Pose dataset comprises 4D radar tensors, LiDAR point clouds, and RGB images, and is collected for a total of 72k frames across 240 sequences with six different complexity-level actions.
We develop an annotation process using RGB images and LiDAR point clouds to accurately label 3D human skeletons.
In addition, we propose HRRadarPose, the first single-stage architecture that extracts the high-resolution representation of 4D radar tensors in 3D space to aid human keypoint estimation.
- Score: 20.186044032530557
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Traditional methods for human localization and pose estimation (HPE), which mainly rely on RGB images as an input modality, confront substantial limitations in real-world applications due to privacy concerns. In contrast, radar-based HPE methods emerge as a promising alternative, characterized by distinctive attributes such as through-wall recognition and privacy-preserving, rendering the method more conducive to practical deployments. This paper presents a Radar Tensor-based human pose (RT-Pose) dataset and an open-source benchmarking framework. The RT-Pose dataset comprises 4D radar tensors, LiDAR point clouds, and RGB images, and is collected for a total of 72k frames across 240 sequences with six different complexity-level actions. The 4D radar tensor provides raw spatio-temporal information, differentiating it from other radar point cloud-based datasets. We develop an annotation process using RGB images and LiDAR point clouds to accurately label 3D human skeletons. In addition, we propose HRRadarPose, the first single-stage architecture that extracts the high-resolution representation of 4D radar tensors in 3D space to aid human keypoint estimation. HRRadarPose outperforms previous radar-based HPE work on the RT-Pose benchmark. The overall HRRadarPose performance on the RT-Pose dataset, as reflected in a mean per joint position error (MPJPE) of 9.91cm, indicates the persistent challenges in achieving accurate HPE in complex real-world scenarios. RT-Pose is available at https://huggingface.co/datasets/uwipl/RT-Pose.
Related papers
- LaRI: Layered Ray Intersections for Single-view 3D Geometric Reasoning [75.9814389360821]
layered ray intersections (LaRI) is a new method for unseen geometry reasoning from a single image.
Benefiting from the compact and layered representation, LaRI enables complete, efficient, and view-aligned geometric reasoning.
We build a complete training data generation pipeline for synthetic and real-world data, including 3D objects and scenes.
arXiv Detail & Related papers (2025-04-25T15:31:29Z) - RaSCL: Radar to Satellite Crossview Localization [20.34909681483566]
We present a method of registering imaging radar on the ground with overhead RGB imagery, with joint optimization of relative poses from odometry and global poses from our overhead registration.
Our work presents insights on extracting essential features from RGB overhead images for effective global localization against overhead imagery using only ground radar and a single georeferenced initial guess.
arXiv Detail & Related papers (2025-04-22T13:41:04Z) - RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection [68.99784784185019]
Poor lighting or adverse weather conditions degrade camera performance.
Radar suffers from noise and positional ambiguity.
We propose RobuRCDet, a robust object detection model in BEV.
arXiv Detail & Related papers (2025-02-18T17:17:38Z) - Enhanced 3D Object Detection via Diverse Feature Representations of 4D Radar Tensor [5.038148262901536]
Raw 4D Radar (4DRT) offers richer spatial and Doppler information than conventional point clouds.<n>We propose a novel 3D object detection framework that maximizes the utility of 4DRT while preserving efficiency.<n>We show that our framework achieves improvements of 7.3% in AP_3D and 9.5% in AP_BEV over the baseline RTNH model when using extremely sparse inputs.
arXiv Detail & Related papers (2025-02-10T02:48:56Z) - RaCFormer: Towards High-Quality 3D Object Detection via Query-based Radar-Camera Fusion [58.77329237533034]
We propose a Radar-Camera fusion transformer (RaCFormer) to boost the accuracy of 3D object detection.
RaCFormer achieves superior results of 64.9% mAP and 70.2% on nuScenes datasets.
arXiv Detail & Related papers (2024-12-17T09:47:48Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - GET-UP: GEomeTric-aware Depth Estimation with Radar Points UPsampling [7.90238039959534]
Existing algorithms process radar data by projecting 3D points onto the image plane for pixel-level feature extraction.
We propose GET-UP, leveraging attention-enhanced Graph Neural Networks (GNN) to exchange and aggregate both 2D and 3D information from radar data.
We benchmark our proposed GET-UP on the nuScenes dataset, achieving state-of-the-art performance with a 15.3% and 14.7% improvement in MAE and RMSE over the previously best-performing model.
arXiv Detail & Related papers (2024-09-02T14:15:09Z) - RadarPillars: Efficient Object Detection from 4D Radar Point Clouds [42.9356088038035]
We present RadarPillars, a pillar-based object detection network.
By decomposing radial velocity data, RadarPillars significantly outperform state-of-the-art detection results on the View-of-Delft dataset.
This comes at a significantly reduced parameter count, surpassing existing methods in terms of efficiency and enabling real-time performance on edge devices.
arXiv Detail & Related papers (2024-08-09T12:13:38Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - RadarOcc: Robust 3D Occupancy Prediction with 4D Imaging Radar [15.776076554141687]
3D occupancy-based perception pipeline has significantly advanced autonomous driving.
Current methods rely on LiDAR or camera inputs for 3D occupancy prediction.
We introduce a novel approach that utilizes 4D imaging radar sensors for 3D occupancy prediction.
arXiv Detail & Related papers (2024-05-22T21:48:17Z) - SMURF: Spatial Multi-Representation Fusion for 3D Object Detection with
4D Imaging Radar [12.842457981088378]
This paper introduces spatial multi-representation fusion (SMURF), a novel approach to 3D object detection using a single 4D imaging radar.
SMURF mitigates measurement inaccuracy caused by limited angular resolution and multi-path propagation of radar signals.
Experimental evaluations on View-of-Delft (VoD) and TJ4DRadSet datasets demonstrate the effectiveness and generalization ability of SMURF.
arXiv Detail & Related papers (2023-07-20T11:33:46Z) - HPointLoc: Point-based Indoor Place Recognition using Synthetic RGB-D
Images [58.720142291102135]
We present a novel dataset named as HPointLoc, specially designed for exploring capabilities of visual place recognition in indoor environment.
The dataset is based on the popular Habitat simulator, in which it is possible to generate indoor scenes using both own sensor data and open datasets.
arXiv Detail & Related papers (2022-12-30T12:20:56Z) - K-Radar: 4D Radar Object Detection for Autonomous Driving in Various
Weather Conditions [9.705678194028895]
KAIST-Radar is a novel large-scale object detection dataset and benchmark.
It contains 35K frames of 4D Radar tensor (4DRT) data with power measurements along the Doppler, range, azimuth, and elevation dimensions.
We provide auxiliary measurements from carefully calibrated high-resolution Lidars, surround stereo cameras, and RTK-GPS.
arXiv Detail & Related papers (2022-06-16T13:39:21Z) - Simple and Effective Synthesis of Indoor 3D Scenes [78.95697556834536]
We study the problem of immersive 3D indoor scenes from one or more images.
Our aim is to generate high-resolution images and videos from novel viewpoints.
We propose an image-to-image GAN that maps directly from reprojections of incomplete point clouds to full high-resolution RGB-D images.
arXiv Detail & Related papers (2022-04-06T17:54:46Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
We propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
In this paper, we propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
arXiv Detail & Related papers (2021-08-12T15:22:33Z) - Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD
Images [69.5662419067878]
Grounding referring expressions in RGBD image has been an emerging field.
We present a novel task of 3D visual grounding in single-view RGBD image where the referred objects are often only partially scanned due to occlusion.
Our approach first fuses the language and the visual features at the bottom level to generate a heatmap that localizes the relevant regions in the RGBD image.
Then our approach conducts an adaptive feature learning based on the heatmap and performs the object-level matching with another visio-linguistic fusion to finally ground the referred object.
arXiv Detail & Related papers (2021-03-14T11:18:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.