Causal Inference with Complex Treatments: A Survey
- URL: http://arxiv.org/abs/2407.14022v1
- Date: Fri, 19 Jul 2024 04:46:58 GMT
- Title: Causal Inference with Complex Treatments: A Survey
- Authors: Yingrong Wang, Haoxuan Li, Minqin Zhu, Anpeng Wu, Ruoxuan Xiong, Fei Wu, Kun Kuang,
- Abstract summary: Causal inference plays an important role in explanatory analysis and decision making across various fields like statistics, marketing, health care, and education.
In this paper, we refer to complex treatments and systematically and comprehensively review the causal inference methods for addressing them.
- Score: 34.653398789722104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference plays an important role in explanatory analysis and decision making across various fields like statistics, marketing, health care, and education. Its main task is to estimate treatment effects and make intervention policies. Traditionally, most of the previous works typically focus on the binary treatment setting that there is only one treatment for a unit to adopt or not. However, in practice, the treatment can be much more complex, encompassing multi-valued, continuous, or bundle options. In this paper, we refer to these as complex treatments and systematically and comprehensively review the causal inference methods for addressing them. First, we formally revisit the problem definition, the basic assumptions, and their possible variations under specific conditions. Second, we sequentially review the related methods for multi-valued, continuous, and bundled treatment settings. In each situation, we tentatively divide the methods into two categories: those conforming to the unconfoundedness assumption and those violating it. Subsequently, we discuss the available datasets and open-source codes. Finally, we provide a brief summary of these works and suggest potential directions for future research.
Related papers
- A Diffusion-Based Method for Learning the Multi-Outcome Distribution of Medical Treatments [25.154328229802985]
In medicine, treatments often influence multiple, interdependent outcomes.<n>Most machine learning methods for predicting treatment effects focus on single-outcome settings.<n>We propose a novel diffusion-based method called DIME to learn the joint distribution of multiple outcomes.
arXiv Detail & Related papers (2025-06-02T10:49:55Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.
Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.
Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.
Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - Counterfactual Prediction Under Selective Confounding [3.6860485638625673]
This research addresses the challenge of conducting causal inference between a binary treatment and its resulting outcome when not all confounders are known.
We relax the requirement of knowing all confounders under desired treatment, which we refer to as Selective Confounding.
We provide both theoretical error bounds and empirical evidence of the effectiveness of our proposed scheme using synthetic and real-world child placement data.
arXiv Detail & Related papers (2023-10-21T16:54:59Z) - The Blessings of Multiple Treatments and Outcomes in Treatment Effect
Estimation [53.81860494566915]
Existing studies leveraged proxy variables or multiple treatments to adjust for confounding bias.
In many real-world scenarios, there is greater interest in studying the effects on multiple outcomes.
We show that parallel studies of multiple outcomes involved in this setting can assist each other in causal identification.
arXiv Detail & Related papers (2023-09-29T14:33:48Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
We consider the violation of the classical no-interference assumption, meaning that the treatment of one individuals might affect the outcomes of another.
To make interference tractable, we consider a known network that describes how interference may travel.
We study estimators for the average direct treatment effect on the treated in such a setting.
arXiv Detail & Related papers (2022-12-07T14:53:47Z) - Causal Modeling of Policy Interventions From Sequences of Treatments and
Outcomes [5.107614397012659]
Data-driven decision-making requires the ability to predict what happens if a policy is changed.
Existing methods that predict how the outcome evolves assume that the tentative sequences of future treatments are fixed in advance.
In practice, the treatments are determinedally by a policy and may depend on the efficiency of previous treatments.
arXiv Detail & Related papers (2022-09-09T06:50:37Z) - Learning to Infer Counterfactuals: Meta-Learning for Estimating Multiple
Imbalanced Treatment Effects [41.06974193338288]
We consider data episodes among treatment groups in counterfactual inference as meta-learning tasks.
We train a meta-learner from a set of source treatment groups with sufficient samples and update the model by gradient descent with limited samples in target treatment.
We perform experiments on two real-world datasets to evaluate inference accuracy and generalization ability.
arXiv Detail & Related papers (2022-08-13T23:22:12Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Robust and Heterogenous Odds Ratio: Estimating Price Sensitivity for
Unbought Items [0.0]
Mining for heterogeneous responses to an intervention is a crucial step for data-driven operations.
We investigate how to estimate price sensitivity from transaction-level data.
arXiv Detail & Related papers (2021-06-21T19:50:32Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.