論文の概要: Representative Feature Extraction During Diffusion Process for Sketch
Extraction with One Example
- arxiv url: http://arxiv.org/abs/2401.04362v1
- Date: Tue, 9 Jan 2024 05:22:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-10 16:39:11.745988
- Title: Representative Feature Extraction During Diffusion Process for Sketch
Extraction with One Example
- Title(参考訳): スケッチ抽出における拡散過程における代表的特徴抽出
- Authors: Kwan Yun, Youngseo Kim, Kwanggyoon Seo, Chang Wook Seo, Junyong Noh
- Abstract要約: DiffSketchは、画像から様々なスタイル化されたスケッチを生成する方法である。
提案手法は,事前学習した拡散モデル内での深部特徴の豊かな意味論から代表的特徴を選択することに焦点を当てる。
- 参考スコア(独自算出の注目度): 6.520083224801834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce DiffSketch, a method for generating a variety of stylized
sketches from images. Our approach focuses on selecting representative features
from the rich semantics of deep features within a pretrained diffusion model.
This novel sketch generation method can be trained with one manual drawing.
Furthermore, efficient sketch extraction is ensured by distilling a trained
generator into a streamlined extractor. We select denoising diffusion features
through analysis and integrate these selected features with VAE features to
produce sketches. Additionally, we propose a sampling scheme for training
models using a conditional generative approach. Through a series of
comparisons, we verify that distilled DiffSketch not only outperforms existing
state-of-the-art sketch extraction methods but also surpasses diffusion-based
stylization methods in the task of extracting sketches.
- Abstract(参考訳): DiffSketchは、画像から様々なスタイル化されたスケッチを生成する方法である。
提案手法は,事前学習した拡散モデル内での深部特徴の豊かな意味論から代表的特徴を選択することに焦点を当てる。
この新しいスケッチ生成方法は、1つの手描きで訓練することができる。
さらに、訓練された発電機を流線形抽出器に蒸留することにより、効率的なスケッチ抽出を実現する。
解析により拡散特徴を識別し,これらの特徴をVAE特徴と統合してスケッチを作成する。
さらに,条件付き生成手法を用いたモデル学習のためのサンプリング手法を提案する。
DiffSketchの蒸留法は, 既存のスケッチ抽出法に勝るだけでなく, スケッチ抽出作業において, 拡散型スタイリゼーション法を超越していることを確認した。
関連論文リスト
- Training-free Diffusion Model Alignment with Sampling Demons [15.400553977713914]
提案手法は,報酬関数やモデル再学習を介さずに,推論時の復調過程を導出するための最適化手法である。
提案手法は,高報酬に対応する領域の密度を最適化することにより,雑音分布の制御を行う。
我々の知る限り、提案手法は拡散モデルに対する最初の推論時間、バックプロパゲーションフリーな選好アライメント法である。
論文 参考訳(メタデータ) (2024-10-08T07:33:49Z) - Semi-supervised reference-based sketch extraction using a contrastive learning framework [6.20476217797034]
本研究では,対象とする参照スケッチのスタイルを非ペアデータトレーニングで模倣できる,新しいマルチモーダルスケッチ抽出手法を提案する。
提案手法は,定量評価と定性評価の両面において,最先端のスケッチ抽出法と未完成画像翻訳法より優れる。
論文 参考訳(メタデータ) (2024-07-19T04:51:34Z) - Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion [61.03681839276652]
拡散強制(Diffusion Forcing)は、拡散モデルをトレーニングし、トークンの集合に独立した音レベルを付与する、新たなトレーニングパラダイムである。
因果的次トーケン予測モデルを訓練して1つまたは複数の未来のトークンを生成することで、シーケンス生成モデルに拡散強制を適用する。
論文 参考訳(メタデータ) (2024-07-01T15:43:25Z) - Rethinking Score Distillation as a Bridge Between Image Distributions [97.27476302077545]
提案手法は, 劣化した画像(ソース)を自然画像分布(ターゲット)に転送することを目的としている。
本手法は,複数の領域にまたがって容易に適用可能であり,特殊な手法の性能のマッチングや評価を行うことができる。
テキストから2D、テキストベースのNeRF最適化、絵画を実画像に変換すること、光学錯視生成、および3Dスケッチから実画像に変換することにおいて、その実用性を実証する。
論文 参考訳(メタデータ) (2024-06-13T17:59:58Z) - Multistep Distillation of Diffusion Models via Moment Matching [29.235113968156433]
本稿では,拡散モデルをより高速にサンプル化するための新しい手法を提案する。
本手法は,クリーンデータの条件付き期待値に適合して,多段階拡散モデルを数段階モデルに蒸留する。
我々は、Imagenetデータセット上で、最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2024-06-06T14:20:21Z) - Plug-and-Play Diffusion Distillation [14.359953671470242]
誘導拡散モデルのための新しい蒸留手法を提案する。
オリジナルのテキスト・ツー・イメージモデルが凍結されている間、外部の軽量ガイドモデルがトレーニングされる。
提案手法は,クラス化なしガイド付きラテント空間拡散モデルの推論をほぼ半減することを示す。
論文 参考訳(メタデータ) (2024-06-04T04:22:47Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
本研究では,操作数を増やすことなく,高い品質と操作率の逆転法を導入し,再現精度を向上する。
我々は,近年の高速化拡散モデルを含む様々なサンプリングアルゴリズムとモデルを用いて,Renoise手法の性能を評価する。
論文 参考訳(メタデータ) (2024-03-21T17:52:08Z) - DiffSketcher: Text Guided Vector Sketch Synthesis through Latent
Diffusion Models [33.6615688030998]
DiffSketcherは、自然言語入力を使用してテキストベクトル化されたフリーハンドスケッチを作成する革新的なアルゴリズムである。
我々の実験は、DiffSketcherが以前の作業よりも高い品質を実現していることを示している。
論文 参考訳(メタデータ) (2023-06-26T13:30:38Z) - Sketch-Guided Text-to-Image Diffusion Models [57.12095262189362]
本稿では,事前訓練されたテキスト-画像拡散モデルを示す普遍的なアプローチを提案する。
本手法では,タスク専用のモデルや専用エンコーダをトレーニングする必要はない。
我々は、スケッチ・ツー・イメージの翻訳タスクに特に焦点をあて、画像を生成する堅牢で表現力のある方法を明らかにする。
論文 参考訳(メタデータ) (2022-11-24T18:45:32Z) - DWDN: Deep Wiener Deconvolution Network for Non-Blind Image Deblurring [66.91879314310842]
本稿では,古典的なWienerデコンボリューションフレームワークを学習深い特徴と統合することにより,特徴空間における明示的なデコンボリューションプロセスを提案する。
マルチスケールのカスケード機能改善モジュールは、分離された深い特徴から退色画像を予測する。
提案したDeep Wienerデコンボリューションネットワークは,目に見える成果物が少なく,かつ,最先端の非盲点画像デコンボリューション手法を広いマージンで定量的に上回っていることを示す。
論文 参考訳(メタデータ) (2021-03-18T00:38:11Z) - Distributed Sketching Methods for Privacy Preserving Regression [54.51566432934556]
ランダム化されたスケッチを利用して、問題の次元を減らし、プライバシを保ち、非同期分散システムにおけるストラグラーレジリエンスを改善します。
従来のスケッチ手法に対する新しい近似保証を導出し、分散スケッチにおけるパラメータ平均化の精度を解析する。
大規模実験によるサーバレスコンピューティングプラットフォームにおける分散スケッチのパフォーマンスについて説明する。
論文 参考訳(メタデータ) (2020-02-16T08:35:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。