Fair Overlap Number of Balls (Fair-ONB): A Data-Morphology-based Undersampling Method for Bias Reduction
- URL: http://arxiv.org/abs/2407.14210v2
- Date: Mon, 23 Sep 2024 16:52:05 GMT
- Title: Fair Overlap Number of Balls (Fair-ONB): A Data-Morphology-based Undersampling Method for Bias Reduction
- Authors: José Daniel Pascual-Triana, Alberto Fernández, Paulo Novais, Francisco Herrera,
- Abstract summary: One of the key issues regarding classification problems in Trustworthy Artificial Intelligence is ensuring Fairness in the prediction of different classes.
Data quality is critical in these cases, as biases in training data can be reflected in machine learning, impacting human lives and failing to comply with current regulations.
This work proposes Fair Overlap Number of Balls (Fair-ONB), an undersampling method that harnesses the data morphology of the different data groups to perform guided undersampling in overlap areas.
- Score: 8.691440960669649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the key issues regarding classification problems in Trustworthy Artificial Intelligence is ensuring Fairness in the prediction of different classes when protected (sensitive) features are present. Data quality is critical in these cases, as biases in training data can be reflected in machine learning, impacting human lives and failing to comply with current regulations. One strategy to improve data quality and avoid these problems is preprocessing the dataset. Instance selection via undersampling can foster balanced learning of classes and protected feature values. Performing undersampling in class overlap areas close to the decision boundary should bolster the impact on the classifier. This work proposes Fair Overlap Number of Balls (Fair-ONB), an undersampling method that harnesses the data morphology of the different data groups (obtained from the combination of classes and protected feature values) to perform guided undersampling in overlap areas. It employs attributes of the ball coverage of the groups, such as the radius, number of covered instances and density, to select the most suitable areas for undersampling and reduce bias. Results show that the Fair-ONB method improves model Fairness with low impact on the classifier's predictive performance.
Related papers
- Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
We aim to train models that mitigate group fairness disparity without causing harm to model accuracy.
The current data acquisition methods, such as fair active learning approaches, typically require annotating sensitive attributes.
We propose a tractable active data sampling algorithm that does not rely on training group annotations.
arXiv Detail & Related papers (2024-02-20T07:57:38Z) - Learning with Imbalanced Noisy Data by Preventing Bias in Sample
Selection [82.43311784594384]
Real-world datasets contain not only noisy labels but also class imbalance.
We propose a simple yet effective method to address noisy labels in imbalanced datasets.
arXiv Detail & Related papers (2024-02-17T10:34:53Z) - Local overlap reduction procedure for dynamic ensemble selection [13.304462985219237]
Class imbalance is a characteristic known for making learning more challenging for classification models.
We propose a DS technique which attempts to minimize the effects of the local class overlap during the classification procedure.
Experimental results show that the proposed technique can significantly outperform the baseline.
arXiv Detail & Related papers (2022-06-16T21:31:05Z) - HardVis: Visual Analytics to Handle Instance Hardness Using Undersampling and Oversampling Techniques [48.82319198853359]
HardVis is a visual analytics system designed to handle instance hardness mainly in imbalanced classification scenarios.
Users can explore subsets of data from different perspectives to decide all those parameters.
The efficacy and effectiveness of HardVis are demonstrated with a hypothetical usage scenario and a use case.
arXiv Detail & Related papers (2022-03-29T17:04:16Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Does Data Repair Lead to Fair Models? Curating Contextually Fair Data To
Reduce Model Bias [10.639605996067534]
Contextual information is a valuable cue for Deep Neural Networks (DNNs) to learn better representations and improve accuracy.
In COCO, many object categories have a much higher co-occurrence with men compared to women, which can bias a DNN's prediction in favor of men.
We introduce a data repair algorithm using the coefficient of variation, which can curate fair and contextually balanced data for a protected class.
arXiv Detail & Related papers (2021-10-20T06:00:03Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
There are demographic biases present in current facial recognition (FR) models.
We introduce our Balanced Faces in the Wild dataset to measure these biases across different ethnic and gender subgroups.
We find that relying on a single score threshold to differentiate between genuine and imposters sample pairs leads to suboptimal results.
We propose a novel domain adaptation learning scheme that uses facial features extracted from state-of-the-art neural networks.
arXiv Detail & Related papers (2021-03-16T15:05:49Z) - Robust Fairness under Covariate Shift [11.151913007808927]
Making predictions that are fair with regard to protected group membership has become an important requirement for classification algorithms.
We propose an approach that obtains the predictor that is robust to the worst-case in terms of target performance.
arXiv Detail & Related papers (2020-10-11T04:42:01Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.