論文の概要: Thought-Like-Pro: Enhancing Reasoning of Large Language Models through Self-Driven Prolog-based Chain-of-Though
- arxiv url: http://arxiv.org/abs/2407.14562v1
- Date: Thu, 18 Jul 2024 18:52:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 21:53:36.844975
- Title: Thought-Like-Pro: Enhancing Reasoning of Large Language Models through Self-Driven Prolog-based Chain-of-Though
- Title(参考訳): Thought-like-Pro: 自己駆動型Prolog-based Chain-of-Thoughによる大規模言語モデルの推論の強化
- Authors: Xiaoyu Tan, Yongxin Deng, Xihe Qiu, Weidi Xu, Chao Qu, Wei Chu, Yinghui Xu, Yuan Qi,
- Abstract要約: 大規模言語モデル(LLM)は汎用アシスタントとして非常に優れた性能を示している。
多様な推論タスクにおける学習と一般化を容易にする新しい学習フレームワークTHOUGHT-LIKE-PROを導入する。
実験結果から,本手法はLLMの推論能力を大幅に向上させる可能性が示唆された。
- 参考スコア(独自算出の注目度): 31.964412924094656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown exceptional performance as general-purpose assistants, excelling across a variety of reasoning tasks. This achievement represents a significant step toward achieving artificial general intelligence (AGI). Despite these advancements, the effectiveness of LLMs often hinges on the specific prompting strategies employed, and there remains a lack of a robust framework to facilitate learning and generalization across diverse reasoning tasks. To address these challenges, we introduce a novel learning framework, THOUGHT-LIKE-PRO In this framework, we utilize imitation learning to imitate the Chain-of-Thought (CoT) process which is verified and translated from reasoning trajectories generated by a symbolic Prolog logic engine. This framework proceeds in a self-driven manner, that enables LLMs to formulate rules and statements from given instructions and leverage the symbolic Prolog engine to derive results. Subsequently, LLMs convert Prolog-derived successive reasoning trajectories into natural language CoT for imitation learning. Our empirical findings indicate that our proposed approach substantially enhances the reasoning abilities of LLMs and demonstrates robust generalization across out-of-distribution reasoning tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は汎用アシスタントとして非常に優れた性能を示し、様々な推論タスクに優れています。
この成果は、人工知能(AGI)の実現に向けた重要な一歩である。
これらの進歩にもかかわらず、LLMの有効性は、しばしば採用される特定の推進戦略に依存し、多様な推論タスクをまたいだ学習と一般化を促進するための堅牢な枠組みが欠如している。
これらの課題に対処するために,我々は,新しい学習フレームワークであるTHOUGHT-LIKE-PROを導入する。このフレームワークでは,擬似学習を利用して,記号的プロログ論理エンジンによって生成された推論軌道から検証され,翻訳されるChain-of-Thought(CoT)プロセスを模倣する。
このフレームワークは自己駆動的な方法で進行し、LLMは与えられた命令からルールとステートメントを定式化し、シンボルPrologエンジンを利用して結果を導出する。
その後、LLMはProlog由来の逐次推論軌道を、模倣学習のために自然言語のCoTに変換する。
実験の結果,提案手法はLLMの推論能力を大幅に向上させ,分布外推論タスクにまたがる堅牢な一般化を示すことが示唆された。
関連論文リスト
- Reversal of Thought: Enhancing Large Language Models with Preference-Guided Reverse Reasoning Warm-up [9.42385235462794]
大規模言語モデル(LLM)は、推論タスクにおいて顕著な性能を示すが、数学的および複雑な論理的推論において制限に直面している。
LLMの論理的推論能力の向上を目的とした新しいフレームワークであるReversal of Thought (RoT)を提案する。
RoT は Preference-Guided Reverse Reasoning warm-up 戦略を利用している。
論文 参考訳(メタデータ) (2024-10-16T07:44:28Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、一貫性のない推論に苦戦している。
本研究では,LLM出力の信頼性と透明性を高めるフレームワークであるProof of Thoughtを紹介する。
主な貢献は、論理的整合性を高めるためのソート管理を備えた堅牢な型システム、事実的知識と推論的知識を明確に区別するための規則の明示である。
論文 参考訳(メタデータ) (2024-09-25T18:35:45Z) - Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data [53.433309883370974]
本研究では,大規模言語モデルの推論能力を高めるための学習信号としてグラフベースの合成推論データを使用することの可能性と限界について検討する。
2つの確立された自然言語推論タスクにおいて,合成グラフに基づく推論データによる教師付き微調整が,他の標準評価ベンチマークでの有効性を損なうことなく,LLMの推論性能を効果的に向上することを示した。
論文 参考訳(メタデータ) (2024-09-19T03:39:09Z) - Logic Agent: Enhancing Validity with Logic Rule Invocation [24.815341366820753]
Chain-of-Thoughtプロンプトは、推論タスク中に言語モデルの推論能力を増強するための重要なテクニックとして現れている。
本稿では,大規模言語モデルにおける推論プロセスの有効性向上を目的としたエージェントベースのフレームワークであるLogic Agent(LA)を紹介する。
論文 参考訳(メタデータ) (2024-04-28T10:02:28Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
大規模言語モデル(LLM)は、下流タスクで最先端のパフォーマンスを達成することで、多くの領域に革命をもたらした。
近年の取り組みにより,LSMは逐次決定問題の解決に乏しいことが示されている。
論文 参考訳(メタデータ) (2024-01-17T08:22:52Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
大規模言語モデル(LLM)の論理的推論能力を評価・拡張するための新しいアプローチであるLogicAskerを紹介する。
提案手法は, LLMが論理規則を学習する際の大きなギャップを明らかにし, 異なるモデル間で29%から90%の推論失敗を識別する。
GPT-4oのようなモデルにおける論理的推論を最大5%向上させることで、これらの知見を活用して、ターゲットとなる実演例と微調整データを構築した。
論文 参考訳(メタデータ) (2024-01-01T13:53:53Z) - A Principled Framework for Knowledge-enhanced Large Language Model [58.1536118111993]
大規模言語モデル(LLM)は汎用性があるが、深い信頼性のある推論を必要とするタスクに悩まされることが多い。
本稿では、知識を効果的に固定し、閉ループ推論プロセスを用いるLLMを作成するための厳密な設計のフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-18T18:10:02Z) - Are LLMs Rigorous Logical Reasoner? Empowering Natural Language Proof
Generation with Contrastive Stepwise Decoding [11.385103498440932]
本稿では,論理的推論のためのモデルの能力を高めるために,負の推論経路を用いることにより,ステップワイズな証明生成に対照的な復号を導入する。
EntailmentBankの実験は、言語モデルの計画能力を実証する上で、我々の手法の成功を裏付けている。
論文 参考訳(メタデータ) (2023-11-12T05:12:49Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
本稿では,自己指導型ポストトレーニングによる論理的知識の活用の可能性について検討する。
我々はMERItの自己回帰的目的変数を考案し、パラメータサイズが30億から13億の2つのLLM系列、すなわちFLAN-T5とLLaMAと統合する。
2つの挑戦的な論理的推論ベンチマークの結果は、LogicLLMの有効性を示している。
論文 参考訳(メタデータ) (2023-05-23T06:13:10Z) - LogiGAN: Learning Logical Reasoning via Adversarial Pre-training [58.11043285534766]
本稿では,言語モデルの論理的推論能力を向上させるために,教師なしの対人事前学習フレームワークLogiGANを提案する。
人間の学習におけるリフレクティブ思考の促進効果に着想を得て,逆生成検証アーキテクチャを用いて学習思考過程をシミュレートする。
LogiGANで事前トレーニングされたベースモデルと大規模言語モデルの両方で、12のデータセットで明らかなパフォーマンス改善が示されている。
論文 参考訳(メタデータ) (2022-05-18T08:46:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。