論文の概要: Text Style Transfer: An Introductory Overview
- arxiv url: http://arxiv.org/abs/2407.14822v1
- Date: Sat, 20 Jul 2024 09:54:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 20:42:12.739416
- Title: Text Style Transfer: An Introductory Overview
- Title(参考訳): テキストスタイルの転送 - 序文の概要
- Authors: Sourabrata Mukherjee, Ondrej Dušek,
- Abstract要約: テキストスタイル転送(TST)は、スタイルに依存しないコンテンツを保存しながらテキストスタイルの属性を操作する自然言語生成において重要なタスクである。
TSTを対象とする属性は、丁寧さ、著者シップ、攻撃的言語の緩和、感情の修正、テキストの形式調整など、多岐にわたる可能性がある。
本稿では,その課題,既存アプローチ,データセット,評価尺度,サブタスク,アプリケーションについて概説する。
- 参考スコア(独自算出の注目度): 0.1534667887016089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text Style Transfer (TST) is a pivotal task in natural language generation to manipulate text style attributes while preserving style-independent content. The attributes targeted in TST can vary widely, including politeness, authorship, mitigation of offensive language, modification of feelings, and adjustment of text formality. TST has become a widely researched topic with substantial advancements in recent years. This paper provides an introductory overview of TST, addressing its challenges, existing approaches, datasets, evaluation measures, subtasks, and applications. This fundamental overview improves understanding of the background and fundamentals of text style transfer.
- Abstract(参考訳): テキストスタイル転送(TST)は、スタイルに依存しないコンテンツを保存しながらテキストスタイルの属性を操作する自然言語生成において重要なタスクである。
TSTを対象とする属性は、丁寧さ、著者シップ、攻撃的言語の緩和、感情の修正、テキストの形式調整など、多岐にわたる可能性がある。
近年,TSTは研究が盛んに行われ,進歩が進んでいる。
本稿では,その課題,既存アプローチ,データセット,評価尺度,サブタスク,アプリケーションについて概説する。
この基本的な概要は、テキストスタイル転送の背景と基礎を理解することを改善する。
関連論文リスト
- A Survey of Text Style Transfer: Applications and Ethical Implications [4.749824105387292]
テキストスタイル転送(TST)は、テキストのスタイルに依存しない内容を変更することなく、丁寧さ、形式性、感情など、言語使用の選択された属性を制御することを目的としている。
本稿では,従来の言語アプローチと近年のディープラーニング手法の両方を用いて,長年にわたって研究されてきたTST応用の総合的なレビューを行う。
論文 参考訳(メタデータ) (2024-07-23T17:15:23Z) - Don't lose the message while paraphrasing: A study on content preserving
style transfer [61.38460184163704]
スタイル伝達研究の現実的な応用には,コンテンツ保存が不可欠である。
形式性伝達領域の例において、様々なスタイル転送モデルを比較する。
我々は,スタイル伝達のための最先端技術について,精密な比較研究を行っている。
論文 参考訳(メタデータ) (2023-08-17T15:41:08Z) - MSSRNet: Manipulating Sequential Style Representation for Unsupervised
Text Style Transfer [82.37710853235535]
教師なしのテキストスタイル転送タスクは、メインのコンテンツを保持しながらテキストをターゲットのスタイルに書き換えることを目的としている。
従来の方法では、固定サイズのベクトルを使ってテキストスタイルを規制するが、個々のトークンのスタイル強度を正確に伝達することは困難である。
提案手法は,テキスト中の各トークンに個々のスタイルベクトルを割り当てることでこの問題に対処する。
論文 参考訳(メタデータ) (2023-06-12T13:12:29Z) - StoryTrans: Non-Parallel Story Author-Style Transfer with Discourse
Representations and Content Enhancing [73.81778485157234]
長文は通常、文よりも談話構造のような複雑な著者の言語的嗜好を含んでいる。
我々は、入力されたストーリーを特定の著者スタイルに転送する必要があるノン並列ストーリー作者スタイル転送のタスクを定式化する。
モデルが自動エンコーダに退化することを防ぐために,学習した談話表現からスタイル的特徴を引き離すための追加の学習目標を用いる。
論文 参考訳(メタデータ) (2022-08-29T08:47:49Z) - VAE based Text Style Transfer with Pivot Words Enhancement Learning [5.717913255287939]
本稿では,VT-STOWER法(PivOt Words Enhancement leaRning)を用いたVAEベースのテキストスタイル転送を提案する。
本稿では,特定のスタイルで決定的な単語を学習するためのピボット・ワード・ラーニングを紹介する。
提案したVT-STOWERは、新しいフレキシブルなスタイルの強度制御機構により、異なるTSTシナリオにスケールすることができる。
論文 参考訳(メタデータ) (2021-12-06T16:41:26Z) - Syntax Matters! Syntax-Controlled in Text Style Transfer [24.379552683296392]
既存のテキストスタイル転送(TST)メソッドは、テキストの内容とスタイル属性をアンタングルするスタイル分類器に依存している。
本稿では,構文認識スタイル分類器を含む新しい構文認識制御可能生成(SACG)モデルを提案する。
提案手法は最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-12T17:35:23Z) - StylePTB: A Compositional Benchmark for Fine-grained Controllable Text
Style Transfer [90.6768813620898]
スタイル転送は、ソース文定数からコアの意味を維持しながら、ターゲットのスタイル変更を伴うテキストを制御的に生成することを目的としています。
テキストの原子語彙,構文,セマンティック,セマンティックトランスファーにまたがる21のきめ細かなスタイリスティックな文を含む大規模ベンチマークであるStylePTBを導入する。
StylePTBの既存のメソッドは、細かい変更をモデル化するのに苦労し、複数のスタイルを構成するのにさらに困難です。
論文 参考訳(メタデータ) (2021-04-12T04:25:09Z) - Deep Learning for Text Style Transfer: A Survey [71.8870854396927]
テキストスタイル転送は、生成したテキストの特定の属性を制御することを目的として、自然言語生成において重要なタスクである。
2017年の最初のニューラルテキストスタイル転送作業以降,100以上の代表的な記事を対象とした,ニューラルテキストスタイル転送の研究の体系的な調査を行う。
タスクの定式化、既存のデータセットとサブタスク、評価、並列データと非並列データの存在下での豊富な方法論について論じる。
論文 参考訳(メタデータ) (2020-11-01T04:04:43Z) - Text Style Transfer: A Review and Experimental Evaluation [26.946157705298685]
Text Style Transfer (TST)タスクは、スタイルに依存しないコンテンツを保持しながら、テキストのスタイリスティックな特性を変更することを目的としている。
多くの新しいTSTアルゴリズムが開発され、業界はこれらのアルゴリズムを活用してエキサイティングなTSTアプリケーションを実現している。
本稿では,テキストスタイルの伝達に関する最近の研究成果を概観する。
論文 参考訳(メタデータ) (2020-10-24T02:02:58Z) - Improving Disentangled Text Representation Learning with
Information-Theoretic Guidance [99.68851329919858]
自然言語の独特な性質は、テキスト表現の分離をより困難にする。
情報理論にインスパイアされた本研究では,テキストの不整合表現を効果的に表現する手法を提案する。
条件付きテキスト生成とテキストスタイル転送の両方の実験は、不整合表現の質を実証する。
論文 参考訳(メタデータ) (2020-06-01T03:36:01Z) - Review of Text Style Transfer Based on Deep Learning [14.376596231697043]
従来のテキストスタイルの転送モデルでは、テキストスタイルは専門家の知識と手書きのルールに頼っている。
自然言語処理の分野での深層学習の適用により,ディープラーニングに基づくテキストスタイルの伝達手法の研究が盛んに行われている。
本稿では,近年の深層学習に基づくテキストスタイル伝達モデルの研究を要約し,本研究の方向性と進歩を要約し,分析し,比較する。
論文 参考訳(メタデータ) (2020-05-06T15:35:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。