論文の概要: 3D Gaussian Parametric Head Model
- arxiv url: http://arxiv.org/abs/2407.15070v1
- Date: Sun, 21 Jul 2024 06:03:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 19:28:49.216279
- Title: 3D Gaussian Parametric Head Model
- Title(参考訳): 3次元ガウスパラメトリックヘッドモデル
- Authors: Yuelang Xu, Lizhen Wang, Zerong Zheng, Zhaoqi Su, Yebin Liu,
- Abstract要約: 本稿では,人間の頭部の複雑さを正確に表現するために3次元ガウス的パラメトリックヘッドモデルを提案する。
シームレスな顔のポートレートと、単一の画像から詳細な頭部アバターの再構築を可能にする。
提案手法は,高画質でリアルタイムな実写レンダリングを実現し,パラメトリックヘッドモデルの分野に有意義な貢献をする。
- 参考スコア(独自算出の注目度): 40.62136721707944
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Creating high-fidelity 3D human head avatars is crucial for applications in VR/AR, telepresence, digital human interfaces, and film production. Recent advances have leveraged morphable face models to generate animated head avatars from easily accessible data, representing varying identities and expressions within a low-dimensional parametric space. However, existing methods often struggle with modeling complex appearance details, e.g., hairstyles and accessories, and suffer from low rendering quality and efficiency. This paper introduces a novel approach, 3D Gaussian Parametric Head Model, which employs 3D Gaussians to accurately represent the complexities of the human head, allowing precise control over both identity and expression. Additionally, it enables seamless face portrait interpolation and the reconstruction of detailed head avatars from a single image. Unlike previous methods, the Gaussian model can handle intricate details, enabling realistic representations of varying appearances and complex expressions. Furthermore, this paper presents a well-designed training framework to ensure smooth convergence, providing a guarantee for learning the rich content. Our method achieves high-quality, photo-realistic rendering with real-time efficiency, making it a valuable contribution to the field of parametric head models.
- Abstract(参考訳): VR/AR、テレプレゼンス、デジタルヒューマンインタフェース、映画制作において、高忠実な3Dヘッドアバターの作成は不可欠である。
近年の進歩は、変形可能な顔モデルを利用して、容易にアクセス可能なデータからアニメーションヘッドアバターを生成し、低次元パラメトリック空間内の様々なアイデンティティと表現を表現している。
しかし、既存の手法では、例えばヘアスタイルやアクセサリーといった複雑な外観の詳細をモデル化するのに苦労し、レンダリング品質と効率の低下に悩まされることが多い。
本稿では,人間の頭部の複雑さを正確に表現するために,3次元ガウス的パラメトリック頭部モデル(3D Gaussian Parametric Head Model)を提案する。
さらに、シームレスな顔像補間と、単一の画像から詳細な頭部アバターの再構築を可能にする。
従来の手法とは異なり、ガウスモデルは複雑な詳細を扱うことができ、様々な外観や複雑な表現の現実的な表現を可能にする。
さらに,スムーズなコンバージェンスを確保するための優れたトレーニングフレームワークを提案し,リッチコンテンツを学ぶための保証を提供する。
提案手法は,高画質でリアルタイムな実写レンダリングを実現し,パラメトリックヘッドモデルの分野に有意義な貢献をする。
関連論文リスト
- PSAvatar: A Point-based Shape Model for Real-Time Head Avatar Animation with 3D Gaussian Splatting [17.78639236586134]
PSAvatarは、アニマタブルヘッドアバター作成のための新しいフレームワークである。
詳細な表現と高忠実度レンダリングに3D Gaussian を使用している。
PSAvatarは多種多様な被験者の高忠実度頭部アバターを再構築でき、リアルタイムでアバターをアニメーションできることを示す。
論文 参考訳(メタデータ) (2024-01-23T16:40:47Z) - Deformable 3D Gaussian Splatting for Animatable Human Avatars [50.61374254699761]
本稿では,デジタルアバターを単一単分子配列で構築する手法を提案する。
ParDy-Humanは、リアルなダイナミックな人間のアバターの明示的なモデルを構成する。
当社のアバター学習には,Splatマスクなどの追加アノテーションが不要であり,ユーザのハードウェア上でも,フル解像度の画像を効率的に推測しながら,さまざまなバックグラウンドでトレーニングすることが可能である。
論文 参考訳(メタデータ) (2023-12-22T20:56:46Z) - Gaussian3Diff: 3D Gaussian Diffusion for 3D Full Head Synthesis and
Editing [53.05069432989608]
本稿では,3次元人間の頭部を顕著な柔軟性で生成するための新しい枠組みを提案する。
本手法は,顔の特徴や表情を微妙に編集した多彩でリアルな3次元頭部の作成を容易にする。
論文 参考訳(メタデータ) (2023-12-05T19:05:58Z) - Gaussian Head Avatar: Ultra High-fidelity Head Avatar via Dynamic Gaussians [41.86540576028268]
軽量なスパースビュー設定のための制御可能な3次元ガウスヘッドアバターを提案する。
提案手法は,超過大表現下でも2K解像度での超高忠実なレンダリング品質を実現するため,最先端のスパースビュー法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-12-05T11:01:44Z) - HAvatar: High-fidelity Head Avatar via Facial Model Conditioned Neural
Radiance Field [44.848368616444446]
我々は,NeRFの表現性とパラメトリックテンプレートからの事前情報を統合する,新しいハイブリッド・明示的3次元表現,顔モデル条件付きニューラルラジアンス場を導入する。
画像から画像への変換ネットワークを用いた全体的なGANアーキテクチャを採用することにより,動的頭部外観の高分解能,現実的,かつ一貫した合成を実現する。
論文 参考訳(メタデータ) (2023-09-29T10:45:22Z) - Generalizable One-shot Neural Head Avatar [90.50492165284724]
本研究では,1枚の画像から3次元頭部アバターを再構成し,アニメイトする手法を提案する。
本研究では,一視点画像に基づく識別不能な人物を一般化するだけでなく,顔領域内外における特徴的詳細を捉えるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-14T22:33:09Z) - Single-Shot Implicit Morphable Faces with Consistent Texture
Parameterization [91.52882218901627]
本稿では,3次元形態素な顔モデルを構築するための新しい手法を提案する。
本手法は, 最先端手法と比較して, フォトリアリズム, 幾何, 表現精度を向上する。
論文 参考訳(メタデータ) (2023-05-04T17:58:40Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
フルボディの体積アバターを学習するためのフレームワークであるDRaCoNを提案する。
2Dと3Dのニューラルレンダリング技術の利点を利用する。
挑戦的なZJU-MoCapとHuman3.6Mデータセットの実験は、DRaCoNが最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2022-03-29T17:59:15Z) - PVA: Pixel-aligned Volumetric Avatars [34.929560973779466]
少数の入力から人間の頭部の体積アバターを予測するための新しいアプローチを考案する。
提案手法は,光度再レンダリングによる損失のみを前提としたエンドツーエンドで,明示的な3次元監視を必要とせずに訓練を行う。
論文 参考訳(メタデータ) (2021-01-07T18:58:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。