論文の概要: FFHFlow: A Flow-based Variational Approach for Multi-fingered Grasp Synthesis in Real Time
- arxiv url: http://arxiv.org/abs/2407.15161v1
- Date: Sun, 21 Jul 2024 13:33:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 19:08:59.379871
- Title: FFHFlow: A Flow-based Variational Approach for Multi-fingered Grasp Synthesis in Real Time
- Title(参考訳): FFHFlow:マルチフィンガーグラスのリアルタイム合成のためのフローベース変分手法
- Authors: Qian Feng, Jianxiang Feng, Zhaopeng Chen, Rudolph Triebel, Alois Knoll,
- Abstract要約: 正規化フロー(NF)に基づくDGM(Deep Generative Model)の利用を提案する。
我々はまず,不完全点雲上に条件付きグリップ分布を学習するために,単一条件NF(cNFs)を直接適用することにより,多様性の向上を推し進めた。
これにより、我々は新しいフローベースd Deep Latent Variable Model (DLVM)を開発する動機となった。
変分オートエンコーダ(VAE)とは異なり、提案するDLVMは2つのcNFを事前分布と可能性分布に利用することにより、典型的な落とし穴に対処する。
- 参考スコア(独自算出の注目度): 19.308304984645684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthesizing diverse and accurate grasps with multi-fingered hands is an important yet challenging task in robotics. Previous efforts focusing on generative modeling have fallen short of precisely capturing the multi-modal, high-dimensional grasp distribution. To address this, we propose exploiting a special kind of Deep Generative Model (DGM) based on Normalizing Flows (NFs), an expressive model for learning complex probability distributions. Specifically, we first observed an encouraging improvement in diversity by directly applying a single conditional NFs (cNFs), dubbed FFHFlow-cnf, to learn a grasp distribution conditioned on the incomplete point cloud. However, we also recognized limited performance gains due to restricted expressivity in the latent space. This motivated us to develop a novel flow-based d Deep Latent Variable Model (DLVM), namely FFHFlow-lvm, which facilitates more reasonable latent features, leading to both diverse and accurate grasp synthesis for unseen objects. Unlike Variational Autoencoders (VAEs), the proposed DLVM counteracts typical pitfalls such as mode collapse and mis-specified priors by leveraging two cNFs for the prior and likelihood distributions, which are usually restricted to being isotropic Gaussian. Comprehensive experiments in simulation and real-robot scenarios demonstrate that our method generates more accurate and diverse grasps than the VAE baselines. Additionally, a run-time comparison is conducted to reveal its high potential for real-time applications.
- Abstract(参考訳): 多指ハンドによる多様な正確な把握を合成することは、ロボティクスにおいて重要な課題である。
生成モデルに焦点をあてたこれまでの努力は、多次元・高次元のグリップ分布を正確に把握するに足りなかった。
そこで本研究では,複雑な確率分布を学習するための表現モデルである正規化フロー(NF)に基づく,DGM(Deep Generative Model)の利用を提案する。
具体的には, FFHFlow-cnfと呼ばれる単一条件NF(cNFs)を直接適用して, 不完全点雲上に条件付きグリップ分布を学習することにより, 多様性の向上を図った。
しかし, 潜在空間における表現力の制限により, 限られた性能向上が認められた。
そこで我々は,新しいフローベースD Deep Latent Variable Model (DLVM, FFHFlow-lvm) を開発する動機となった。
変分オートエンコーダ(VAE)とは異なり、提案するDLVMは、通常等方ガウスに制限される2つのcNFを事前分布と可能性分布に利用することにより、モード崩壊や不特定前処理といった典型的な落とし穴を対処する。
シミュレーションおよび実ロボットシナリオにおける包括的実験により,本手法はVAEベースラインよりも正確で多様な把握を実現できることが示された。
さらに、リアルタイムアプリケーションに対する高い可能性を明らかにするために、実行時比較を行う。
関連論文リスト
- Preconditioned Inexact Stochastic ADMM for Deep Model [35.37705488695026]
本稿では,拡張性のある並列計算を可能にするアルゴリズム PISA を開発し,様々な第2モーメント方式をサポートする。
厳密な理論的な保証の下で、アルゴリズムは勾配のリプシッツの唯一の仮定の下で収束する。
視覚モデル、大規模言語モデル、強化学習モデル、生成的敵ネットワーク、繰り返しニューラルネットワークを含む様々なFMの総合的または微調整実験は、様々な最先端の方向と比較して優れた数値性能を示す。
論文 参考訳(メタデータ) (2025-02-15T12:28:51Z) - FlowDAS: A Flow-Based Framework for Data Assimilation [15.64941169350615]
FlowDASは、状態遷移ダイナミクスと生成前の学習を統合するために補間剤を用いた新しい生成モデルベースのフレームワークである。
実験では,ローレンツシステムから高次元流体超解像タスクに至るまで,様々なベンチマークにおいてFlowDASの優れた性能を示す。
論文 参考訳(メタデータ) (2025-01-13T05:03:41Z) - ConsistentFeature: A Plug-and-Play Component for Neural Network Regularization [0.32885740436059047]
過パラメータ化されたニューラルネットワークモデルは、トレーニングとテストセットの間に大きなパフォーマンスの相違をもたらすことが多い。
モデルは異なるデータセットで異なる表現を学習する。
適応的手法であるConsistentFeatureを提案し、同じトレーニングセットのランダムなサブセット間で特徴差を制約することでモデルを正規化する。
論文 参考訳(メタデータ) (2024-12-02T13:21:31Z) - Idempotent Unsupervised Representation Learning for Skeleton-Based Action Recognition [13.593511876719367]
教師なし表現学習のための新しい骨格ベース等等化生成モデル(IGM)を提案する。
ベンチマークデータセットであるNTU RGB+DとPKUMMDに関する実験により,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-27T06:29:04Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
本稿では,豊富な生成前駆体を含む事前学習型安定拡散(SD)モデルと,階層的表現を統合可能な統一型ヘッド(Uヘッド)と,識別前駆体を提供する適応型専門家からなる,シンプルで効果的なフレームワークを提案する。
包括的調査では、異なる時間ステップで潜伏変数に隠された知覚の粒度や様々なU-netステージなど、バーマスの潜在的な特性が明らかになった。
有望な結果は,有望な学習者としての拡散モデルの可能性を示し,情報的かつ堅牢な視覚表現の確立にその意義を定めている。
論文 参考訳(メタデータ) (2024-01-29T10:36:57Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Self-Regression Learning for Blind Hyperspectral Image Fusion Without
Label [11.291055330647977]
ハイパースペクトル画像(HSI)を再構築した自己回帰学習法を提案し,観察モデルを推定する。
特に,hsiを復元するinvertible neural network (inn) と,観測モデルを推定する2つの完全連結ネットワーク (fcn) を採用している。
我々のモデルは、合成データと実世界のデータセットの両方で実験で最先端の手法を上回ることができる。
論文 参考訳(メタデータ) (2021-03-31T04:48:21Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。