論文の概要: Privacy-Preserving Multi-Center Differential Protein Abundance Analysis with FedProt
- arxiv url: http://arxiv.org/abs/2407.15220v1
- Date: Sun, 21 Jul 2024 17:09:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 18:49:14.244757
- Title: Privacy-Preserving Multi-Center Differential Protein Abundance Analysis with FedProt
- Title(参考訳): FedProtを用いたプライバシ保存型マルチセンター微分タンパク質異常解析
- Authors: Yuliya Burankova, Miriam Abele, Mohammad Bakhtiari, Christine von Törne, Teresa Barth, Lisa Schweizer, Pieter Giesbertz, Johannes R. Schmidt, Stefan Kalkhof, Janina Müller-Deile, Peter A van Veelen, Yassene Mohammed, Elke Hammer, Lis Arend, Klaudia Adamowicz, Tanja Laske, Anne Hartebrodt, Tobias Frisch, Chen Meng, Julian Matschinske, Julian Späth, Richard Röttger, Veit Schwämmle, Stefanie M. Hauck, Stefan Lichtenthaler, Axel Imhof, Matthias Mann, Christina Ludwig, Bernhard Kuster, Jan Baumbach, Olga Zolotareva,
- Abstract要約: FedProtは、分散データの協調微分タンパク質量分析のための最初のプライバシ保護ツールである。
プールデータに適用されたDECMSに匹敵する精度を達成し、絶対差を完全に無視できる。
FedProtはWebツールとして利用可能で、FeatureCloud Appとして詳細なドキュメントが提供されている。
- 参考スコア(独自算出の注目度): 1.0691609140312175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantitative mass spectrometry has revolutionized proteomics by enabling simultaneous quantification of thousands of proteins. Pooling patient-derived data from multiple institutions enhances statistical power but raises significant privacy concerns. Here we introduce FedProt, the first privacy-preserving tool for collaborative differential protein abundance analysis of distributed data, which utilizes federated learning and additive secret sharing. In the absence of a multicenter patient-derived dataset for evaluation, we created two, one at five centers from LFQ E.coli experiments and one at three centers from TMT human serum. Evaluations using these datasets confirm that FedProt achieves accuracy equivalent to DEqMS applied to pooled data, with completely negligible absolute differences no greater than $\text{$4 \times 10^{-12}$}$. In contrast, -log10(p-values) computed by the most accurate meta-analysis methods diverged from the centralized analysis results by up to 25-27. FedProt is available as a web tool with detailed documentation as a FeatureCloud App.
- Abstract(参考訳): 定量質量分析法は、数千のタンパク質の同時定量を可能にして、プロテオミクスに革命をもたらした。
複数の機関から患者由来のデータをポーリングすることは、統計力を高めるが、重要なプライバシー上の懸念を引き起こす。
ここでは、フェデレーション学習と付加的な秘密共有を利用する分散データの協調微分タンパク質量分析のための、最初のプライバシ保護ツールであるFedProtを紹介する。
評価のための多施設患者由来のデータセットが欠如しているため,LFQ E.coli実験から5センター,TMTヒト血清から3センターに1センターを作成した。
これらのデータセットを用いた評価では、FedProtは、プールデータに適用されたDECMSと同等の精度を達成しており、完全に無視可能な絶対差は$\text{$4 \times 10^{-12}$}$以上である。
対照的に、最も正確なメタ分析手法によって計算された-log10(p-values)は、集中分析結果から最大25-27まで変化した。
FedProtはWebツールとして利用可能で、FeatureCloud Appとして詳細なドキュメントが提供されている。
関連論文リスト
- Improved Robustness for Deep Learning-based Segmentation of Multi-Center Myocardial Perfusion MRI Datasets Using Data Adaptive Uncertainty-guided Space-time Analysis [0.24285581051793656]
灌流データセットの完全な自動解析により、患者のストレス/レスト研究の迅速かつ客観的な報告が可能になる。
トレーニングデータやソフトウェアやハードウェアのバリエーションが限られているにもかかわらず、マルチセンタデータセットを分析できるディープラーニング技術は、現在進行中の課題である。
提案したDAUGS分析手法は,多心応力灌流データセットのセグメンテーションのためのディープラーニング手法の堅牢性を向上させる可能性を秘めている。
論文 参考訳(メタデータ) (2024-08-09T01:21:41Z) - PrivFED -- A Framework for Privacy-Preserving Federated Learning in Enhanced Breast Cancer Diagnosis [0.0]
本研究では、ウィスコンシンデータセットに基づいてトレーニングされたフェデレーション学習フレームワークを導入し、データの不足や不均衡といった課題を軽減する。
このモデルの平均精度はエッジデバイスで99.95%、中央サーバで98%である。
論文 参考訳(メタデータ) (2024-05-13T18:01:57Z) - Investigation of Federated Learning Algorithms for Retinal Optical
Coherence Tomography Image Classification with Statistical Heterogeneity [6.318288071829899]
我々は,OCT画像分類モデルを分散的に学習するためのFedAvgとFedProxの有効性を検討した。
IID と Non-IID 設定で複数のクライアントに公開可能な OCT データセットを分割し,各クライアントのサブセットをローカルにトレーニングした。
論文 参考訳(メタデータ) (2024-02-15T15:58:42Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
タンパク質の熱安定性を正確に予測する能力は、様々なサブフィールドや生化学への応用において重要である。
タンパク質配列と構造的特徴を統合したESMによる効率的なアプローチを導入し, 単一点突然変異によるタンパク質の熱安定性変化を予測する。
論文 参考訳(メタデータ) (2023-12-07T03:25:49Z) - Data-Free Distillation Improves Efficiency and Privacy in Federated
Thorax Disease Analysis [11.412151951949102]
大規模、多中心、マルチスキャナ設定における胸部疾患の解析は、厳格なプライバシーポリシーによって制限されることが多い。
我々は,データフリー蒸留に基づくFLアプローチであるFedKDFを紹介する。
FedKDFでは、サーバは軽量なジェネレータを使用して、プライベートデータやプロキシデータセットへのアクセスを必要とせずに、異なるクライアントからの知識を集約する。
論文 参考訳(メタデータ) (2023-10-22T18:27:35Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
我々はFedSkipと呼ばれるデータ駆動型アプローチを導入し、フェデレーション平均化を定期的にスキップし、ローカルモデルをクロスデバイスに分散することで、クライアントの最適化を改善する。
我々は、FedSkipがはるかに高い精度、より良いアグリゲーション効率、競合する通信効率を達成することを示すために、さまざまなデータセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2022-12-14T13:57:01Z) - Sensitivity analysis in differentially private machine learning using
hybrid automatic differentiation [54.88777449903538]
感性分析のための新しいテクスチブリド自動識別システム(AD)を導入する。
これにより、ニューラルネットワークをプライベートデータ上でトレーニングするなど、任意の微分可能な関数合成の感度をモデル化できる。
当社のアプローチは,データ処理の設定において,プライバシ損失に関する原則的推論を可能にする。
論文 参考訳(メタデータ) (2021-07-09T07:19:23Z) - Accuracy and Privacy Evaluations of Collaborative Data Analysis [4.987315310656657]
非モデル共有型フェデレーション学習として,次元性低減データ表現の共有による協調的データ分析が提案されている。
本稿では,本フレームワークの精度とプライバシ評価について分析する。
論文 参考訳(メタデータ) (2021-01-27T00:38:47Z) - Federated Doubly Stochastic Kernel Learning for Vertically Partitioned
Data [93.76907759950608]
本稿では,垂直分割データに対する2倍のカーネル学習アルゴリズムを提案する。
本稿では,FDSKLがカーネルを扱う場合,最先端のフェデレーション学習手法よりもはるかに高速であることを示す。
論文 参考訳(メタデータ) (2020-08-14T05:46:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。