論文の概要: 3D Reconstruction of the Human Colon from Capsule Endoscope Video
- arxiv url: http://arxiv.org/abs/2407.15228v1
- Date: Sun, 21 Jul 2024 17:31:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 18:49:14.236059
- Title: 3D Reconstruction of the Human Colon from Capsule Endoscope Video
- Title(参考訳): カプセル内視鏡による大腸の3次元再構築
- Authors: Pål Anders Floor, Ivar Farup, Marius Pedersen,
- Abstract要約: 本研究では,ヒト大腸全切片の3次元モデル構築の可能性について,ワイヤレスカプセル内視鏡による画像シーケンスを用いて検討した。
近年のヒト消化器系の仮想グラフィックベースモデルでは、歪みやアーティファクトの有効化や無効化が可能なため、問題の解決が可能になっている。
- 参考スコア(独自算出の注目度): 2.3513645401551337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the number of people affected by diseases in the gastrointestinal system is ever-increasing, a higher demand on preventive screening is inevitable. This will significantly increase the workload on gastroenterologists. To help reduce the workload, tools from computer vision may be helpful. In this paper, we investigate the possibility of constructing 3D models of whole sections of the human colon using image sequences from wireless capsule endoscope video, providing enhanced viewing for gastroenterologists. As capsule endoscope images contain distortion and artifacts non-ideal for many 3D reconstruction algorithms, the problem is challenging. However, recent developments of virtual graphics-based models of the human gastrointestinal system, where distortion and artifacts can be enabled or disabled, makes it possible to ``dissect'' the problem. The graphical model also provides a ground truth, enabling computation of geometric distortion introduced by the 3D reconstruction method. In this paper, most distortions and artifacts are left out to determine if it is feasible to reconstruct whole sections of the human gastrointestinal system by existing methods. We demonstrate that 3D reconstruction is possible using simultaneous localization and mapping. Further, to reconstruct the gastrointestinal wall surface from resulting point clouds, varying greatly in density, Poisson surface reconstruction is a good option. The results are promising, encouraging further research on this problem.
- Abstract(参考訳): 消化器疾患に罹患する人が増え続けているため、予防検査の需要が高まることは避けられない。
これにより、胃腸科医の作業量が大幅に増加する。
作業負荷を減らすために、コンピュータビジョンのツールが役に立つかもしれません。
本稿では,ヒト大腸全切片の3次元モデル構築の可能性について,ワイヤレスカプセル内視鏡による画像シーケンスを用いて検討し,胃腸科医の視認性を高めることを目的とした。
カプセル内視鏡画像は、多くの3D再構成アルゴリズムでは非理想的であり、歪みやアーチファクトを含んでいるため、この問題は困難である。
しかし,近年のヒト消化器系の仮想グラフィックベースモデルの開発では,歪みやアーティファクトの有効化や無効化が可能となり,その問題を「発見」することが可能となった。
グラフィカルモデルは、3次元再構成法によって導入された幾何歪みの計算を可能にする基礎的真理も提供する。
本稿では,既存の方法により,ヒトの消化管系全体の再構築が可能かどうかを判断するために,ほとんどの歪みや遺物が残されている。
同時局所化とマッピングにより3次元再構成が可能であることを実証した。
さらに, ポアソンの表面再構成は, 密度が大きく変化する点雲から胃腸壁面を再構築するには, よい選択肢である。
結果は有望であり、この問題に関するさらなる研究を奨励している。
関連論文リスト
- SurgPointTransformer: Vertebrae Shape Completion with RGB-D Data [0.0]
本研究は,RGB-Dデータを用いた3次元脊椎解剖の再構築のための代替的,放射線のないアプローチを提案する。
SurgPointTransformerは, 表面の粗い観察から未露出の脊椎領域を正確に再構築できる手術用形状補修法である。
提案手法は,平均チャンファー距離5.39,Fスコア0.85,アースモーバー距離0.011,信号対雑音比22.90dBを達成し,最先端のベースラインを著しく上回る。
論文 参考訳(メタデータ) (2024-10-02T11:53:28Z) - 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images via Vessel Probability Guided Attenuation Learning [79.60829508459753]
現在の商用デジタルサブトラクション・アンジオグラフィー(DSA)システムは通常、再構築を行うために数百のスキャンビューを要求する。
スパース・ビューDSA画像のダイナミックな血流と不十分な入力は,3次元血管再建作業において重要な課題である。
本稿では,時間に依存しない容器確率場を用いてこの問題を効果的に解くことを提案する。
論文 参考訳(メタデータ) (2024-05-17T11:23:33Z) - High-fidelity Endoscopic Image Synthesis by Utilizing Depth-guided Neural Surfaces [18.948630080040576]
内視鏡画像に適用したNeuSを1フレームの深度マップで補足した新しい大腸部分再建法を提案する。
本手法は, 大腸切片を完全にレンダリングし, 表面の見えない部分を捕捉する際の異常な精度を示す。
このブレークスルーは、安定的で一貫してスケールされた再建を達成するための道を開き、がんスクリーニングの手順と治療介入の質を高めることを約束する。
論文 参考訳(メタデータ) (2024-04-20T18:06:26Z) - Total-Decom: Decomposed 3D Scene Reconstruction with Minimal Interaction [51.3632308129838]
人間のインタラクションを最小限に抑えた3次元再構成法であるTotal-Decomを提案する。
提案手法は,Segment Anything Model (SAM) とハイブリッド型暗黙的なニューラルサーフェス表現をシームレスに統合し,メッシュベースの領域成長技術を用いて正確な3次元オブジェクト分解を行う。
提案手法をベンチマークデータセット上で広範囲に評価し,アニメーションやシーン編集などの下流アプリケーションの可能性を示す。
論文 参考訳(メタデータ) (2024-03-28T11:12:33Z) - EndoGS: Deformable Endoscopic Tissues Reconstruction with Gaussian Splatting [20.848027172010358]
変形性内視鏡組織再建に対する Gaussian Splatting 法を施行した。
提案手法は,動的シーンを扱うための変形場,空間時空間マスクを用いた深度誘導型監視,表面整列正規化項を含む。
結果として、EndoGSは単一視点ビデオ、推定深度マップ、ラベル付きツールマスクから高品質な変形可能な内視鏡組織を再構成しレンダリングする。
論文 参考訳(メタデータ) (2024-01-21T16:14:04Z) - DreaMo: Articulated 3D Reconstruction From A Single Casual Video [59.87221439498147]
対象者の視界が不完全である単一かつカジュアルに捉えたインターネットビデオから3次元形状の連続的再構成について検討した。
DreaMoは、ノベルビューレンダリング、詳細な形状復元、骨格生成において有望な品質を示している。
論文 参考訳(メタデータ) (2023-12-05T09:47:37Z) - Large Intestine 3D Shape Refinement Using Point Diffusion Models for Digital Phantom Generation [1.0135237242899509]
我々は, 幾何学的深層学習の最近の進歩と拡散確率モデルのデノベーションを活用して, 大腸のセグメンテーション結果を改善した。
階層型潜在空間における2つの条件付き微分拡散モデルを訓練し、形状改善を行う。
実験の結果,臓器形状のグローバル分布と微細な細部の両方を捉えるためのアプローチの有効性が示された。
論文 参考訳(メタデータ) (2023-09-15T10:10:48Z) - EndoSurf: Neural Surface Reconstruction of Deformable Tissues with
Stereo Endoscope Videos [72.59573904930419]
ステレオ内視鏡ビデオから軟組織を再構成することは、多くの医療応用にとって必須の前提条件である。
従来の手法では、3Dシーンの表現が不十分なため、高品質な幾何学や外観を作り出すのに苦労していた。
本稿では,RGBD配列から変形面を効果的に表現する神経場に基づく新しい手法であるEndoSurfを提案する。
論文 参考訳(メタデータ) (2023-07-21T02:28:20Z) - A Self-Supervised Approach to Reconstruction in Sparse X-Ray Computed
Tomography [1.0806206850043696]
この研究は、物理インフォームド変分オートエンコーダである自己教師付き確率的ディープラーニング技術を開発し、検証する。
ディープニューラルネットワークは、スパース2次元の投影測定を、既知の類似したオブジェクトのデータセットをトレーニングすることで3次元の再構成に変換するために使用されている。
高品質な再構成はディープラーニングなしでは生成できず、深層ニューラルネットワークは再構築なしでは学習できない。
論文 参考訳(メタデータ) (2022-10-30T02:33:45Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
本稿では,人体に対する新しい暗黙の表現法を提案する。
完全に微分可能で、非交叉形状で最適化可能であり、潜在空間を映し出す。
我々のモデルは、よく設計された損失を伴う、水密でない生データを直接訓練し、微調整することができる。
論文 参考訳(メタデータ) (2021-11-30T04:10:57Z) - 3D Multi-bodies: Fitting Sets of Plausible 3D Human Models to Ambiguous
Image Data [77.57798334776353]
単眼・部分閉塞視からヒトの高密度3次元再構成を実現することの問題点を考察する。
身体の形状やポーズをパラメータ化することで、あいまいさをより効果的にモデル化できることを示唆する。
提案手法は, 3次元人間の標準ベンチマークにおいて, あいまいなポーズ回復において, 代替手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-02T13:55:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。