A Nanomechanical Atomic Force Qubit
- URL: http://arxiv.org/abs/2407.15387v1
- Date: Mon, 22 Jul 2024 05:30:44 GMT
- Title: A Nanomechanical Atomic Force Qubit
- Authors: Shahin Jahanbani, Zi-Huai Zhang, Binhan Hua, Kadircan Godeneli, Boris Müllendorff, Xueyue Zhang, Haoxin Zhou, Alp Sipahigil,
- Abstract summary: We propose using atomic forces to realize a silicon nanomechanical qubit without coupling to an ancillary qubit.
The proposed qubit operates at 60 MHz with a single-phonon level anharmonicity of 5 MHz.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Silicon nanomechanical resonators display ultra-long lifetimes at cryogenic temperatures and microwave frequencies. Achieving quantum control of single-phonons in these devices has so far relied on nonlinearities enabled by coupling to ancillary qubits. In this work, we propose using atomic forces to realize a silicon nanomechanical qubit without coupling to an ancillary qubit. The proposed qubit operates at 60 MHz with a single-phonon level anharmonicity of 5 MHz. We present a circuit quantum acoustodynamics architecture where electromechanical resonators enable dispersive state readout and multi-qubit operations. The combination of strong anharmonicity, ultrahigh mechanical quality factors, and small footprints achievable in this platform could enable quantum-nonlinear phononics for quantum information processing and transduction.
Related papers
- A mechanical qubit [2.123237925838863]
Single-phonon anharmonicity in our system exceeds the decoherence rate by a factor of 6.8.
Our work adds another unique capability to a powerful quantum acoustics platform for quantum simulations, sensing, and information processing.
arXiv Detail & Related papers (2024-06-11T15:27:02Z) - Programmable Quantum Processors based on Spin Qubits with
Mechanically-Mediated Interactions and Transport [0.0]
We describe a method for programmable control of multi-qubit spin systems.
We show coherent manipulation and mechanical transport of a proximal spin qubit by utilizing nuclear spin memory.
With realistic improvements the high-cooperativity regime can be reached, offering a new avenue towards scalable quantum information processing with spin qubits.
arXiv Detail & Related papers (2023-07-23T00:52:19Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Ultra-High Q Nanomechanical Resonators for Force Sensing [91.3755431537592]
I propose that such resonators will allow the detection of electron and nuclear spins with high spatial resolution.
The article lists the challenges that must be overcome before this vision can become reality, and indicates potential solutions.
arXiv Detail & Related papers (2022-09-12T12:21:00Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Measurements of a quantum bulk acoustic resonator using a
superconducting qubit [0.0]
Phonons hold promise for quantum-focused applications as diverse as sensing, information processing, and communication.
We describe a piezoelectric quantum bulk acoustic resonator (QBAR) with a 4.88 GHz resonant frequency.
We couple this QBAR resonator to a superconducting qubit on a separate die and demonstrate quantum control of the mechanics in the coupled system.
arXiv Detail & Related papers (2020-12-08T17:36:33Z) - Proposal for a nanomechanical qubit [0.0]
A mechanical quantum bit could provide an important new platform for quantum computation and sensing.
We show that by coupling one of the flexural modes of a suspended carbon nanotube to the charge states of a double quantum dot defined in the nanotube, it is possible to induce sufficient anharmonicity.
Remarkably, the dephasing due to the quantum dot is expected to be reduced by several orders of magnitude in the coupled system.
arXiv Detail & Related papers (2020-08-24T15:54:23Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Large flux-mediated coupling in hybrid electromechanical system with a
transmon qubit [0.0]
Control over the quantum states of a massive oscillator is important for several technological applications.
We present a hybrid device, consisting of a superconducting transmon qubit and a mechanical resonator coupled using the magnetic-flux.
With improvements in qubit coherence, this system offers a novel platform to realize rich interactions and could potentially provide full control over the quantum motional states.
arXiv Detail & Related papers (2020-01-16T08:59:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.