論文の概要: Automated Road Safety: Enhancing Sign and Surface Damage Detection with AI
- arxiv url: http://arxiv.org/abs/2407.15406v1
- Date: Mon, 22 Jul 2024 06:22:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 16:00:55.286024
- Title: Automated Road Safety: Enhancing Sign and Surface Damage Detection with AI
- Title(参考訳): 道路安全の自動化:AIによるサインと表面損傷検出の強化
- Authors: Davide Merolla, Vittorio Latorre, Antonio Salis, Gianluca Boanelli,
- Abstract要約: 近年のAIの進歩により,道路面や道路標識の異常を検知できる高度監視システムの開発が可能となった。
本稿では,高度深層学習技術を用いた交通標識と道路表面損傷の検出・分類による道路安全向上のための革新的なアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Public transportation plays a crucial role in our lives, and the road network is a vital component in the implementation of smart cities. Recent advancements in AI have enabled the development of advanced monitoring systems capable of detecting anomalies in road surfaces and road signs, which, if unaddressed, can lead to serious road accidents. This paper presents an innovative approach to enhance road safety through the detection and classification of traffic signs and road surface damage using advanced deep learning techniques. This integrated approach supports proactive maintenance strategies, improving road safety and resource allocation for the Molise region and the city of Campobasso. The resulting system, developed as part of the Casa delle Tecnologie Emergenti (House of Emergent Technologies) Molise (Molise CTE) research project funded by the Italian Minister of Economic Growth (MIMIT), leverages cutting-edge technologies such as Cloud Computing and High Performance Computing with GPU utilization. It serves as a valuable tool for municipalities, enabling quick detection of anomalies and the prompt organization of maintenance operations
- Abstract(参考訳): 公共交通機関は私たちの生活において重要な役割を担い、道路網はスマートシティの実現において重要な要素である。
近年のAIの進歩により、道路面や道路標識の異常を検知できる高度な監視システムの開発が可能になった。
本稿では,高度深層学習技術を用いた交通標識と道路表面損傷の検出・分類による道路安全向上のための革新的なアプローチを提案する。
この統合されたアプローチは、積極的維持戦略をサポートし、モーリス地域とカンポバッソ市の道路安全と資源配分を改善している。
Casa delle Tecnologie Emergenti (House of Emergent Technologies) Molise (Molise CTE) というイタリアの経済成長大臣(MIMIT)が資金提供した研究プロジェクトの一環として開発されたこのシステムは、クラウドコンピューティングや高性能コンピューティングなどの最先端技術を活用してGPUを活用している。
市町村にとって貴重な道具であり、異常の迅速検出と維持作業の迅速な組織化を可能にしている。
関連論文リスト
- A Computer Vision Approach for Autonomous Cars to Drive Safe at Construction Zone [0.0]
自律運転システム(ADS)を搭載した車は、適応クルーズ制御、衝突警報、自動駐車など、様々な最先端機能を備えている。
本稿では,多様なドリフト条件下で構築ゾーンや機能で動作可能なコンピュータビジョン技術を利用した,革新的で高精度な道路障害物検出モデルを提案する。
論文 参考訳(メタデータ) (2024-09-24T07:11:00Z) - MetaUrban: An Embodied AI Simulation Platform for Urban Micromobility [52.0930915607703]
最近のロボティクスとエンボディードAIの進歩により、公共の都市空間はもはや人間専用ではない。
公共の都市空間における短距離移動のためのAIによって実現されるマイクロモビリティは、将来の交通システムにおいて重要な要素である。
本稿では,AI駆動型都市マイクロモビリティ研究のための構成シミュレーションプラットフォームであるMetaUrbanを紹介する。
論文 参考訳(メタデータ) (2024-07-11T17:56:49Z) - Enhancing Safety for Autonomous Agents in Partly Concealed Urban Traffic Environments Through Representation-Based Shielding [2.9685635948300004]
本稿では,自律型エージェントが知覚できる情報を中心に,強化学習エージェント(RL)のための新しい状態表現を提案する。
我々の発見は、より堅牢で信頼性の高い自律ナビゲーション戦略の道を開いた。
論文 参考訳(メタデータ) (2024-07-05T08:34:49Z) - Optimized Detection and Classification on GTRSB: Advancing Traffic Sign
Recognition with Convolutional Neural Networks [0.0]
本稿では,CNNの精度を96%近く向上する革新的な手法を提案する。
高度なローカライゼーション技術によってさらに精度が向上する可能性を強調している。
論文 参考訳(メタデータ) (2024-03-13T06:28:37Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) は、自動運転車における安全なエンドツーエンド運転のためのフレームワークである。
Catは、安全クリティカルなシナリオでエージェントを訓練することで、運転エージェントの安全性を継続的に改善することを目的としている。
猫は、訓練中のエージェントに対抗する敵シナリオを効果的に生成できる。
論文 参考訳(メタデータ) (2023-10-19T02:49:31Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
本稿では,自動走行車に特化して設計された最先端道路側認識システムであるMSightについて述べる。
MSightは、リアルタイムの車両検出、ローカライゼーション、トラッキング、短期的な軌道予測を提供する。
評価は、待ち時間を最小限にしてレーンレベルの精度を維持するシステムの能力を強調している。
論文 参考訳(メタデータ) (2023-10-08T21:32:30Z) - From Data to Action: Exploring AI and IoT-driven Solutions for Smarter
Cities [0.0]
この研究は,3つのユースケースに対してデータ駆動型アプローチを提供するインテリジェントな都市管理システムを導入している。
Aveiro Cityでのケーススタディでは、実行可能な洞察を生み出すためのシステムの有効性が示されている。
論文 参考訳(メタデータ) (2023-06-06T10:22:43Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Explainable, automated urban interventions to improve pedestrian and
vehicle safety [0.8620335948752805]
本稿では,歩行者や車両の安全性にアプローチするために,公共データソース,大規模街路画像,コンピュータビジョン技術を組み合わせる。
このパイプラインに関わるステップには、各都市シーンのハザード指標を決定するために、残留畳み込みニューラルネットワークの適応とトレーニングが含まれる。
この計算手法の結果は、都市全体の危険レベルの詳細なマップであり、歩行者と車両の安全性を同時に改善する可能性がある。
論文 参考訳(メタデータ) (2021-10-22T09:17:39Z) - AI in Smart Cities: Challenges and approaches to enable road vehicle
automation and smart traffic control [56.73750387509709]
SCCは、活動やユーティリティの自動化と最適化による効率向上を目指すデータ中心の社会を構想しています。
本稿では、SCCにおけるAIの視点を説明し、道路車両の自動化とスマート交通制御を可能にする交通で使用されるAIベースの技術の概要を示す。
論文 参考訳(メタデータ) (2021-04-07T14:31:08Z) - Smart Urban Mobility: When Mobility Systems Meet Smart Data [55.456196356335745]
都市人口は都市部で約25億人に達し、道路交通量は2050年までに12億台を超えた。
輸送部門の経済貢献は欧州のGDPの5%を占め、アメリカでは平均482.05億ドルの費用がかかる。
論文 参考訳(メタデータ) (2020-05-09T13:53:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。