論文の概要: Efficient Retrieval with Learned Similarities
- arxiv url: http://arxiv.org/abs/2407.15462v2
- Date: Wed, 14 Aug 2024 00:57:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 17:26:11.315526
- Title: Efficient Retrieval with Learned Similarities
- Title(参考訳): 学習類似性を考慮した効率的な検索法
- Authors: Bailu Ding, Jiaqi Zhai,
- Abstract要約: 最先端の検索アルゴリズムは、学習された類似点に移行した。
筆者らは,Mixture-of-Logits (MoL) が普遍近似であり,学習された類似度関数を全て表現できることを示した。
MoLはレコメンデーション検索タスクに新たな最先端結果を設定し、学習した類似性を持つ近似トップk検索は、最大2桁のレイテンシでベースラインを上回ります。
- 参考スコア(独自算出の注目度): 2.729516456192901
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Retrieval plays a fundamental role in recommendation systems, search, and natural language processing by efficiently finding relevant items from a large corpus given a query. Dot products have been widely used as the similarity function in such retrieval tasks, thanks to Maximum Inner Product Search (MIPS) that enabled efficient retrieval based on dot products. However, state-of-the-art retrieval algorithms have migrated to learned similarities. Such algorithms vary in form; the queries can be represented with multiple embeddings, complex neural networks can be deployed, the item ids can be decoded directly from queries using beam search, and multiple approaches can be combined in hybrid solutions. Unfortunately, we lack efficient solutions for retrieval in these state-of-the-art setups. Our work investigates techniques for approximate nearest neighbor search with learned similarity functions. We first prove that Mixture-of-Logits (MoL) is a universal approximator, and can express all learned similarity functions. We next propose techniques to retrieve the approximate top K results using MoL with a tight bound. We finally compare our techniques with existing approaches, showing that MoL sets new state-of-the-art results on recommendation retrieval tasks, and our approximate top-k retrieval with learned similarities outperforms baselines by up to two orders of magnitude in latency, while achieving > .99 recall rate of exact algorithms.
- Abstract(参考訳): Retrievalはリコメンデーションシステム、検索、自然言語処理において、クエリが与えられた大きなコーパスから関連項目を効率的に見つけることによって、基本的な役割を担っている。
ドット製品に基づく効率的な検索を可能にするMIPS(Maximum Inner Product Search)のおかげで、ドット製品はこのような検索タスクにおける類似機能として広く利用されている。
しかし、最先端の検索アルゴリズムは、学習した類似点に移行した。
クエリは複数の埋め込みで表現でき、複雑なニューラルネットワークをデプロイでき、アイテムIDはビームサーチを使用してクエリから直接デコードでき、複数のアプローチをハイブリッドソリューションで組み合わせることができる。
残念なことに、これらの最先端のセットアップでは、検索のための効率的なソリューションが欠如しています。
本研究は,学習類似度関数を用いた近接探索手法について検討する。
最初に、Mixture-of-Logits (MoL) が普遍近似であり、学習されたすべての類似性関数を表現できることを証明した。
次に, タイトな境界を持つMoLを用いて, 近似トップK値を求める手法を提案する。
提案手法を既存の手法と比較し,MoLが推薦検索タスクに新たな最先端結果を設定することを示し,学習類似性を持つ近似トップk検索は,精度の高いアルゴリズムの.99リコール率を達成しつつ,最大2桁のレイテンシでベースラインを上回った。
関連論文リスト
- pEBR: A Probabilistic Approach to Embedding Based Retrieval [4.8338111302871525]
埋め込み検索は、クエリとアイテムの両方の共有セマンティック表現空間を学習することを目的としている。
現在の産業実践では、検索システムは典型的には、異なるクエリに対して一定数のアイテムを検索する。
論文 参考訳(メタデータ) (2024-10-25T07:14:12Z) - Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations [8.796275989527054]
本稿では,学習したスパース埋め込みを高速に検索できる逆インデックスの新たな組織を提案する。
提案手法では,逆リストを幾何学的に結合したブロックに整理し,それぞれに要約ベクトルを備える。
以上の結果から, 地震動は, 最先端の逆インデックスベースソリューションよりも1~2桁高速であることが示唆された。
論文 参考訳(メタデータ) (2024-04-29T15:49:27Z) - Multimodal Learned Sparse Retrieval with Probabilistic Expansion Control [66.78146440275093]
学習検索(LSR)は、クエリとドキュメントを疎語彙ベクトルにエンコードするニューラルネットワークのファミリーである。
テキスト画像検索に焦点をあて,マルチモーダル領域へのLSRの適用について検討する。
LexLIPやSTAIRのような現在のアプローチでは、大規模なデータセットで複雑なマルチステップのトレーニングが必要です。
提案手法は, 密度ベクトルを凍結密度モデルからスパース語彙ベクトルへ効率的に変換する。
論文 参考訳(メタデータ) (2024-02-27T14:21:56Z) - Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
我々は,既存の手法を関係性に配慮した方法で活用し,アンサンブルを学習することを提案する。
関係認識アンサンブルを用いてこれらのセマンティクスを探索すると、一般的なアンサンブル法よりもはるかに大きな検索空間が得られる。
本稿では,リレーショナルなアンサンブル重みを独立に検索する分割探索合成アルゴリズムRelEns-DSCを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:40:12Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - Lexically-Accelerated Dense Retrieval [29.327878974130055]
LADR (Lexically-Accelerated Dense Retrieval) は, 既存の高密度検索モデルの効率を向上する, 簡便な手法である。
LADRは、標準ベンチマークでの徹底的な検索と同等の精度とリコールの両方を一貫して達成する。
論文 参考訳(メタデータ) (2023-07-31T15:44:26Z) - Provably Efficient Representation Learning with Tractable Planning in
Low-Rank POMDP [81.00800920928621]
部分的に観測可能なマルコフ決定過程(POMDP)における表現学習の研究
まず,不確実性(OFU)に直面した最大推定(MLE)と楽観性を組み合わせた復調性POMDPのアルゴリズムを提案する。
次に、このアルゴリズムをより広範な$gamma$-observable POMDPのクラスで機能させる方法を示す。
論文 参考訳(メタデータ) (2023-06-21T16:04:03Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Approximate Nearest Neighbor Search under Neural Similarity Metric for
Large-Scale Recommendation [20.42993976179691]
本稿では,任意のマッチング関数にANN探索を拡張する新しい手法を提案する。
我々の主な考えは、すべての項目から構築された類似性グラフに一致する関数で、欲張りのウォークを実行することである。
提案手法は,Taobaoのディスプレイ広告プラットフォームに完全に展開されており,広告収入の大幅な増加をもたらす。
論文 参考訳(メタデータ) (2022-02-14T07:55:57Z) - Multidimensional Assignment Problem for multipartite entity resolution [69.48568967931608]
Multipartiteエンティティ解決は、複数のデータセットから1つのエンティティにレコードを統合することを目的としている。
代入問題を解くために、グリーディアルゴリズムと大規模近傍探索という2つの手順を適用する。
データベースのサイズが大きくなるにつれて、設計ベースのマルチスタートがより効率的であることを示す。
論文 参考訳(メタデータ) (2021-12-06T20:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。