論文の概要: MBA-RAG: a Bandit Approach for Adaptive Retrieval-Augmented Generation through Question Complexity
- arxiv url: http://arxiv.org/abs/2412.01572v4
- Date: Wed, 01 Jan 2025 08:52:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-03 14:34:27.061337
- Title: MBA-RAG: a Bandit Approach for Adaptive Retrieval-Augmented Generation through Question Complexity
- Title(参考訳): MBA-RAG:質問複雑度による適応検索拡張生成のためのバンドアプローチ
- Authors: Xiaqiang Tang, Qiang Gao, Jian Li, Nan Du, Qi Li, Sihong Xie,
- Abstract要約: 本稿では,クエリの複雑性に基づいて最適な検索戦略を動的に選択する強化学習ベースのフレームワークを提案する。
提案手法は,検索コストを低減しつつ,複数のシングルホップおよびマルチホップデータセット上でのアート結果の新たな状態を実現する。
- 参考スコア(独自算出の注目度): 30.346398341996476
- License:
- Abstract: Retrieval Augmented Generation (RAG) has proven to be highly effective in boosting the generative performance of language model in knowledge-intensive tasks. However, existing RAG framework either indiscriminately perform retrieval or rely on rigid single-class classifiers to select retrieval methods, leading to inefficiencies and suboptimal performance across queries of varying complexity. To address these challenges, we propose a reinforcement learning-based framework that dynamically selects the most suitable retrieval strategy based on query complexity. % our solution Our approach leverages a multi-armed bandit algorithm, which treats each retrieval method as a distinct ``arm'' and adapts the selection process by balancing exploration and exploitation. Additionally, we introduce a dynamic reward function that balances accuracy and efficiency, penalizing methods that require more retrieval steps, even if they lead to a correct result. Our method achieves new state of the art results on multiple single-hop and multi-hop datasets while reducing retrieval costs. Our code are available at https://github.com/FUTUREEEEEE/MBA .
- Abstract(参考訳): Retrieval Augmented Generation (RAG) は、知識集約タスクにおける言語モデルの生成性能を高めるのに非常に有効であることが証明されている。
しかしながら、既存のRAGフレームワークは、検索を無差別に行うか、厳格な単一クラス分類器を頼りに検索方法を選択し、複雑さの異なるクエリをまたいだ非効率性とサブ最適性能をもたらす。
これらの課題に対処するために,クエリの複雑さに基づいて最適な検索戦略を動的に選択する強化学習ベースのフレームワークを提案する。
このアルゴリズムは,各検索手法を 'arm'' として扱い,探索と利用のバランスをとることで選択プロセスに適応する。
さらに, 精度と効率のバランスをとる動的報酬関数を導入し, 正しい結果に導いたとしても, より多くの検索ステップを必要とするペナルティ化手法を提案する。
提案手法は,検索コストを低減しつつ,複数のシングルホップおよびマルチホップデータセットに対して,新たな最先端結果を実現する。
私たちのコードはhttps://github.com/FUTUREEEE/MBA で利用可能です。
関連論文リスト
- Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル幻覚を緩和するための強力なアプローチとして登場した。
既存のRAGフレームワークは、しばしば無差別に検索を適用し、非効率な再検索につながる。
本稿では,精度・コストのトレードオフを動的に調整できる新しいユーザ制御可能なRAGフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:56:20Z) - DeepRAG: Thinking to Retrieval Step by Step for Large Language Models [92.87532210660456]
我々はマルコフ決定過程(MDP)として検索強化推論をモデル化するDeepRAGを提案する。
クエリを反復的に分解することで、DeepRAGは外部知識を取得するか、あるいは各ステップでパラメトリック推論に依存するかを動的に決定する。
実験の結果、DeepRAGは解答精度を21.99%向上させ、検索強化推論の最適化の有効性を示した。
論文 参考訳(メタデータ) (2025-02-03T08:22:45Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - Adapting to Non-Stationary Environments: Multi-Armed Bandit Enhanced Retrieval-Augmented Generation on Knowledge Graphs [23.357843519762483]
近年の研究では、検索-拡張生成フレームワークと知識グラフを組み合わせることで、大規模言語モデルの推論能力を強力に向上することが示されている。
我々は多目的帯域拡張RAGフレームワークを導入し、多様な機能を持つ複数の検索手法をサポートする。
本手法は,定常環境下での最先端性能を達成しつつ,非定常環境でのベースライン手法を著しく向上させる。
論文 参考訳(メタデータ) (2024-12-10T15:56:03Z) - GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval [20.807374287510623]
我々は,多種多様な意図を適応的に捉えるための生成クラスタリング・改革フレームワークGenCRFを提案する。
我々はGenCRFが,nDCG@10で従来のクエリ修正SOTAを最大12%上回り,最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2024-09-17T05:59:32Z) - Retrieval with Learned Similarities [2.729516456192901]
最先端の検索アルゴリズムは、学習された類似点に移行した。
そこで本研究では,Mixture-of-Logits (MoL) を実証的に実現し,多様な検索シナリオにおいて優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2024-07-22T08:19:34Z) - Learning to Retrieve Iteratively for In-Context Learning [56.40100968649039]
イテレーティブ検索は、ポリシー最適化によるイテレーティブな意思決定を可能にする、新しいフレームワークである。
テキスト内学習例を構成するための反復型検索器をインスタンス化し,様々な意味解析タスクに適用する。
ステートエンコーディングのためのパラメータを4M追加するだけで、オフザシェルフの高密度レトリバーをステートフル反復レトリバーに変換する。
論文 参考訳(メタデータ) (2024-06-20T21:07:55Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems [2.6782615615913348]
本稿では,エントロピーに基づく新しい強化学習手法を提案する。
さらに、我々は、期待したリターンを最大化する、政治以外の強化学習手法を設計する。
我々のモデルは様々な経路問題に一般化可能であることを示す。
論文 参考訳(メタデータ) (2022-05-31T09:51:48Z) - Reinforcement Learning for Branch-and-Bound Optimisation using
Retrospective Trajectories [72.15369769265398]
機械学習は分岐のための有望なパラダイムとして登場した。
分岐のための単純かつ効果的なRLアプローチであるレトロ分岐を提案する。
我々は現在最先端のRL分岐アルゴリズムを3~5倍に上回り、500の制約と1000の変数を持つMILP上での最高のILメソッドの性能の20%以内である。
論文 参考訳(メタデータ) (2022-05-28T06:08:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。