論文の概要: A Multi-Level Corroborative Approach for Verification and Validation of Autonomous Robotic Swarms
- arxiv url: http://arxiv.org/abs/2407.15475v1
- Date: Mon, 22 Jul 2024 08:40:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-23 15:40:55.036801
- Title: A Multi-Level Corroborative Approach for Verification and Validation of Autonomous Robotic Swarms
- Title(参考訳): 自律型ロボットスワムの検証と検証のための多層相関手法
- Authors: Dhaminda B. Abeywickrama, Suet Lee, Chris Bennett, Razanne Abu-Aisheh, Tom Didiot-Cook, Simon Jones, Sabine Hauert, Kerstin Eder,
- Abstract要約: 本稿では,自律型ロボット群を形式的に検証し,検証するための総合的マルチレベルモデリング手法を提案する。
検証に用いた我々の形式的マクロモデルでは,実際のシミュレーションから得られたデータによって特徴付けられる。
我々の研究は、実際のロボットを含む実験的な検証とフォーマルな検証を組み合わせる。
- 参考スコア(独自算出の注目度): 0.9937570340630559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modelling and characterizing emergent behaviour within a swarm can pose significant challenges in terms of 'assurance'. Assurance tasks encompass adherence to standards, certification processes, and the execution of verification and validation (V&V) methods, such as model checking. In this study, we propose a holistic, multi-level modelling approach for formally verifying and validating autonomous robotic swarms, which are defined at the macroscopic formal modelling, low-fidelity simulation, high-fidelity simulation, and real-robot levels. Our formal macroscopic models, used for verification, are characterized by data derived from actual simulations, ensuring both accuracy and traceability across different system models. Furthermore, our work combines formal verification with experimental validation involving real robots. In this way, our corroborative approach for V&V seeks to enhance confidence in the evidence, in contrast to employing these methods separately. We explore our approach through a case study focused on a swarm of robots operating within a public cloakroom.
- Abstract(参考訳): Swarm内の創発的な振る舞いをモデル化し、特徴付けることは、"保証"という観点で重要な課題を引き起こす可能性がある。
保証タスクは、標準の遵守、認証プロセス、モデルチェックのような検証と検証(V&V)メソッドの実行を含む。
本研究では, ロボット群を形式的に検証し, 検証を行うための総合的多段階モデリング手法を提案し, マクロな形式的モデリング, 低忠実度シミュレーション, 高忠実度シミュレーション, 実ロボットレベルで定義する。
我々の形式的マクロモデルでは、実際のシミュレーションから得られたデータによって特徴付けられ、異なるシステムモデル間での精度とトレーサビリティが保証される。
さらに,本研究は,実際のロボットによる形式検証と実験検証を組み合わせたものである。
このようにして、V&Vの相関的アプローチは、これらの手法を別々に採用するのとは対照的に、証拠の信頼性を高めることを目指している。
我々は,公営クロークルーム内で動作するロボット群に着目したケーススタディを通じて,我々のアプローチを探究する。
関連論文リスト
- Action Flow Matching for Continual Robot Learning [57.698553219660376]
ロボット工学における継続的な学習は、変化する環境やタスクに常に適応できるシステムを求める。
本稿では,オンラインロボット力学モデルアライメントのためのフローマッチングを利用した生成フレームワークを提案する。
ロボットは,不整合モデルで探索するのではなく,行動自体を変換することで,より効率的に情報収集を行う。
論文 参考訳(メタデータ) (2025-04-25T16:26:15Z) - Using Formal Models, Safety Shields and Certified Control to Validate AI-Based Train Systems [0.5249805590164903]
KI-LOKプロジェクトは、AIコンポーネントを自律列車に安全に統合するための新しい方法を模索している。
我々は,(1)B法を用いた形式解析によるステアリングシステムの安全性確保,(2)ランタイム証明書チェッカーによる認識システムの信頼性向上という2層的なアプローチを追求する。
この作業は、実際のAI出力と実際の証明書チェッカーによって制御されるフォーマルモデル上でシミュレーションを実行するデモレータ内の両方の戦略をリンクする。
論文 参考訳(メタデータ) (2024-11-21T18:09:04Z) - Unsupervised Model Diagnosis [49.36194740479798]
本稿では,ユーザガイドを使わずに,意味論的対実的説明を生成するために,Unsupervised Model Diagnosis (UMO)を提案する。
提案手法は意味論における変化を特定し可視化し,その変化を広範囲なテキストソースの属性と照合する。
論文 参考訳(メタデータ) (2024-10-08T17:59:03Z) - SKT: Integrating State-Aware Keypoint Trajectories with Vision-Language Models for Robotic Garment Manipulation [82.61572106180705]
本稿では、視覚言語モデル(VLM)を用いて、様々な衣服カテゴリーにおけるキーポイント予測を改善する統一的なアプローチを提案する。
我々は、高度なシミュレーション技術を用いて大規模な合成データセットを作成し、大規模な実世界のデータを必要としないスケーラブルなトレーニングを可能にした。
実験結果から, VLM法はキーポイント検出精度とタスク成功率を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-09-26T17:26:16Z) - Multifidelity Cross-validation [0.0]
我々は、複数の忠実度におけるシステムのモデルから観察される関心の量のエミュレートに興味がある。
そこで我々は,LOO-CV(Leave-one-out cross-validation)を用いて代理モデルを積極的に学習する新しい手法を提案する。
本手法は, ガスタービンブレードの熱応力解析だけでなく, 合成試験問題にも有効であることを示す。
論文 参考訳(メタデータ) (2024-07-01T17:42:11Z) - Science based AI model certification for new operational environments with application in traffic state estimation [1.2186759689780324]
さまざまなエンジニアリング領域における人工知能(AI)の役割の拡大は、AIモデルを新たな運用環境にデプロイする際の課題を強調している。
本稿では,新しい運用環境における事前学習型データ駆動モデルの適用可能性を評価するための,科学ベースの認証手法を提案する。
論文 参考訳(メタデータ) (2024-05-13T16:28:00Z) - DiffGen: Robot Demonstration Generation via Differentiable Physics Simulation, Differentiable Rendering, and Vision-Language Model [72.66465487508556]
DiffGenは、微分可能な物理シミュレーション、微分可能なレンダリング、ビジョン言語モデルを統合する新しいフレームワークである。
言語命令の埋め込みとシミュレートされた観察の埋め込みとの距離を最小化することにより、現実的なロボットデモを生成することができる。
実験によると、DiffGenを使えば、人間の努力やトレーニング時間を最小限に抑えて、ロボットデータを効率よく、効果的に生成できる。
論文 参考訳(メタデータ) (2024-05-12T15:38:17Z) - Private Agent-Based Modeling [13.072333113108531]
意思決定におけるエージェントベースのモデルの有用性は、人口を正確に再現する能力に依存している。
しかし、そのようなデータを組み込むことは、プライバシー上の懸念から大きな課題を生んでいる。
本稿では,エージェント属性やインタラクションを集中化せずにエージェントモデルシミュレーション,キャリブレーション,解析を行うことのできる,プライベートエージェントベースモデリングのためのパラダイムを提案する。
論文 参考訳(メタデータ) (2024-04-19T16:30:40Z) - Active Exploration in Bayesian Model-based Reinforcement Learning for Robot Manipulation [8.940998315746684]
ロボットアームのエンドタスクに対するモデルベース強化学習(RL)アプローチを提案する。
我々はベイズニューラルネットワークモデルを用いて、探索中に動的モデルに符号化された信念と情報の両方を確率論的に表現する。
実験により,ベイズモデルに基づくRL手法の利点が示された。
論文 参考訳(メタデータ) (2024-04-02T11:44:37Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - Science based AI model certification for untrained operational environments with application in traffic state estimation [1.2186759689780324]
さまざまなエンジニアリング領域における人工知能(AI)の役割の拡大は、AIモデルを新たな運用環境にデプロイする際の課題を強調している。
本稿では,未訓練の運用環境における事前学習データ駆動モデルの適用可能性を評価するための,科学ベースの認証手法を提案する。
論文 参考訳(メタデータ) (2024-03-21T03:01:25Z) - Formal Modelling for Multi-Robot Systems Under Uncertainty [11.21074891465253]
我々は不確実性下でのマルチロボットシステムのフォーマリズムのモデル化についてレビューする。
計画、強化学習、モデルチェック、シミュレーションにどのように使用できるかについて議論する。
論文 参考訳(メタデータ) (2023-05-26T15:23:35Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
本稿では,潜在符号を用いた分散インスタンス分割モデルのクラスについて検討する。
ロボットピッキングへの応用として,高い精度を実現するための信頼性マスク手法を提案する。
本手法は,新たにリリースした曖昧なシーンのデータセットを含め,ロボットシステムにおける致命的なエラーを著しく低減できることを示す。
論文 参考訳(メタデータ) (2023-05-03T05:57:29Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
モデル最適化のための半自動支援を実現するプロセスマイニング手法を提案する。
所望の粒度で生モデルを抽象化するモデル単純化手法が提案されている。
医療分野の異なるアプリケーションから得られた3つのデータセットを用いて、技術的ソリューションの能力を実証することを目的としている。
論文 参考訳(メタデータ) (2022-06-10T16:20:59Z) - A Multi-Layered Approach for Measuring the Simulation-to-Reality Gap of
Radar Perception for Autonomous Driving [0.0]
仮想テストに頼るためには、採用されているセンサーモデルを検証する必要がある。
レーダ知覚のこのシミュレーションと現実のギャップを測定するための音響手法は存在しない。
提案手法の有効性を,詳細なセンサモデルによる評価により検証した。
論文 参考訳(メタデータ) (2021-06-15T18:51:39Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
本稿では,区間分析に基づく半形式的意思決定手法を提案する。
本手法は, 標準ベンチマークに比較して, 形式検証に対して比較結果を得る。
提案手法は, 意思決定モデルにおける安全性特性を効果的に評価することを可能にする。
論文 参考訳(メタデータ) (2020-10-19T11:18:06Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。