論文の概要: Future-Proofing Mobile Networks: A Digital Twin Approach to Multi-Signal Management
- arxiv url: http://arxiv.org/abs/2407.15520v2
- Date: Tue, 6 Aug 2024 07:25:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 18:22:38.842715
- Title: Future-Proofing Mobile Networks: A Digital Twin Approach to Multi-Signal Management
- Title(参考訳): 未来のモバイルネットワーク:マルチシグナル管理のためのデジタルツインアプローチ
- Authors: Roberto Morabito, Bivek Pandey, Paulius Daubaris, Yasith R Wanigarathna, Sasu Tarkoma,
- Abstract要約: デジタルツイン(DT)は、将来の無線ネットワークにおいて重要な技術となることが期待されている。
我々のフレームワークは多様なデータソースを統合し、ネットワーク性能に関するリアルタイムで総合的な洞察を提供する。
従来の分析は、Generative AI(GenAI)のような新しいAIモデルに依存するように進化する。
- 参考スコア(独自算出の注目度): 2.5341871361006456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital Twins (DTs) are set to become a key enabling technology in future wireless networks, with their use in network management increasing significantly. We developed a DT framework that leverages the heterogeneity of network access technologies as a resource for enhanced network performance and management, enabling smart data handling in the physical network. Tested in a Campus Area Network environment, our framework integrates diverse data sources to provide real-time, holistic insights into network performance and environmental sensing. We also envision that traditional analytics will evolve to rely on emerging AI models, such as Generative AI (GenAI), while leveraging current analytics capabilities. This capacity can simplify analytics processes through advanced ML models, enabling descriptive, diagnostic, predictive, and prescriptive analytics in a unified fashion. Finally, we present specific research opportunities concerning interoperability aspects and envision aligning advancements in DT technology with evolved AI integration.
- Abstract(参考訳): デジタルツイン(DT)は、将来の無線ネットワークにおいて鍵となる技術となり、ネットワーク管理における利用が著しく増加する。
我々は、ネットワークアクセス技術の異質性を生かしたDTフレームワークを開発し、ネットワーク性能と管理を向上し、物理ネットワークにおけるスマートデータ処理を可能にする。
このフレームワークは,キャンパスエリアネットワーク環境において,様々なデータソースを統合し,ネットワーク性能と環境センシングに関するリアルタイムで総合的な洞察を提供する。
私たちはまた、従来の分析が、現在の分析機能を活用しながら、Generative AI(GenAI)のような新しいAIモデルに依存するように進化することを期待しています。
このキャパシティは、高度なMLモデルによる分析プロセスを単純化し、統一された方法で記述、診断、予測、規範分析を可能にする。
最後に、相互運用性に関する具体的な研究機会を示し、進化したAI統合によるDT技術の進歩の整合を構想する。
関連論文リスト
- Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Integrating Generative AI with Network Digital Twins for Enhanced Network Operations [0.0]
本稿では,ネットワークディジタル双生児と生成AIの相乗効果について検討する。
生成AIがネットワークデジタル双生児の精度と運用効率をいかに向上させるかを示す。
論文 参考訳(メタデータ) (2024-06-24T19:54:58Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
次世代の多重入力多重出力(MIMO)はインテリジェントでスケーラブルであることが期待される。
本稿では、カスタマイズされた特殊コンテンツを生成することができる生成型AIエージェントの概念を提案する。
本稿では、生成AIエージェントをパフォーマンス分析に活用することの有効性を示す2つの説得力のあるケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-13T02:39:36Z) - Uncertainty Estimation in Multi-Agent Distributed Learning for AI-Enabled Edge Devices [0.0]
エッジIoTデバイスはFPGAとAIアクセラレータの導入によってパラダイムシフトを経験している。
この進歩は、エッジAIの実用性を強調し、その計算能力を大幅に増幅した。
本研究では,AI対応エッジデバイスによる分散データ処理を実現する手法について検討し,協調学習能力を向上する。
論文 参考訳(メタデータ) (2024-03-14T07:40:32Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
基礎モデルに基づく6GネイティブAIフレームワークを提案し、意図認識型PFMのカスタマイズアプローチを提供し、新しいクラウド-エッジコラボレーションパラダイムを概説する。
実例として,無線通信システムにおける最大和率を達成するために,このフレームワークをオーケストレーションに適用する。
論文 参考訳(メタデータ) (2023-10-26T15:19:40Z) - Towards Intelligent Network Management: Leveraging AI for Network
Service Detection [0.0]
本研究では,高度なネットワークトラフィック分類システムを構築するために機械学習手法を活用することに焦点を当てた。
我々は,様々なネットワークサービスタイプをリアルタイムに識別する,新しいデータ駆動型アプローチを提案する。
本システムは,ネットワークサービスを識別する際,顕著な精度を示す。
論文 参考訳(メタデータ) (2023-10-14T16:06:11Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
次世代無線ネットワーク(例:6G)は人工知能(AI)ネイティブである。
本稿では、新たな因果推論分野を基盤として、AIネイティブな無線ネットワークを構築するための新しいフレームワークを紹介する。
因果発見と表現によって対処できる無線ネットワークの課題をいくつか挙げる。
論文 参考訳(メタデータ) (2023-09-23T00:05:39Z) - The Interplay of AI and Digital Twin: Bridging the Gap between
Data-Driven and Model-Driven Approaches [2.842794675894731]
Digital Twin(DT)の概念は、物理エンティティとネットワークダイナミクスのための仮想ツインを作成することを目的としている。
AIがDTのシードであるという一般的な理解にもかかわらず、DTとAIが互いに有効になることを期待しています。
論文 参考訳(メタデータ) (2022-09-26T05:12:58Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z) - Machine Learning Empowered Intelligent Data Center Networking: A Survey [35.55535885962517]
本稿では,機械学習のデータセンターネットワークへの応用を包括的に検討する。
フロー予測、フロー分類、ロードバランシング、リソース管理、ルーティング最適化、渋滞制御をカバーしている。
我々はREBEL-3Sと呼ばれる品質評価基準を設計し、これらの研究の長所と短所を公平に測定する。
論文 参考訳(メタデータ) (2022-02-28T05:27:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。