論文の概要: Integrating Generative AI with Network Digital Twins for Enhanced Network Operations
- arxiv url: http://arxiv.org/abs/2406.17112v1
- Date: Mon, 24 Jun 2024 19:54:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 18:21:22.748400
- Title: Integrating Generative AI with Network Digital Twins for Enhanced Network Operations
- Title(参考訳): ネットワーク操作強化のための生成AIとネットワークディジタルツインの統合
- Authors: Kassi Muhammad, Teef David, Giulia Nassisid, Tina Farus,
- Abstract要約: 本稿では,ネットワークディジタル双生児と生成AIの相乗効果について検討する。
生成AIがネットワークデジタル双生児の精度と運用効率をいかに向上させるかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As telecommunications networks become increasingly complex, the integration of advanced technologies such as network digital twins and generative artificial intelligence (AI) emerges as a pivotal solution to enhance network operations and resilience. This paper explores the synergy between network digital twins, which provide a dynamic virtual representation of physical networks, and generative AI, particularly focusing on Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs). We propose a novel architectural framework that incorporates these technologies to significantly improve predictive maintenance, network scenario simulation, and real-time data-driven decision-making. Through extensive simulations, we demonstrate how generative AI can enhance the accuracy and operational efficiency of network digital twins, effectively handling real-world complexities such as unpredictable traffic loads and network failures. The findings suggest that this integration not only boosts the capability of digital twins in scenario forecasting and anomaly detection but also facilitates a more adaptive and intelligent network management system.
- Abstract(参考訳): 通信ネットワークが複雑化するにつれ、ネットワークデジタルツインや生成人工知能(AI)といった先進技術の統合が、ネットワークの運用とレジリエンスを高めるための重要なソリューションとして現れます。
本稿では、物理ネットワークの動的仮想表現を提供するネットワークデジタルツインと、生成AIの相乗効果について考察する。
本稿では,これらの技術を組み込んで予測保守,ネットワークシナリオシミュレーション,リアルタイムデータ駆動意思決定などを大幅に改善する新しいアーキテクチャフレームワークを提案する。
予測不能なトラフィック負荷やネットワーク障害といった現実的な複雑さを効果的に処理することで,生成AIがネットワークディジタルツインの精度と運用効率を向上することを示す。
この統合は、シナリオ予測や異常検出におけるデジタルツインの能力を高めるだけでなく、より適応的でインテリジェントなネットワーク管理システムを促進することを示唆している。
関連論文リスト
- Future-Proofing Mobile Networks: A Digital Twin Approach to Multi-Signal Management [2.5341871361006456]
デジタルツイン(DT)は、将来の無線ネットワークにおいて重要な技術となることが期待されている。
我々のフレームワークは多様なデータソースを統合し、ネットワーク性能と環境センシングに関するリアルタイムで総合的な洞察を提供する。
論文 参考訳(メタデータ) (2024-07-22T10:13:46Z) - Improving the Real-Data Driven Network Evaluation Model for Digital Twin Networks [0.2499907423888049]
デジタルツインネットワーク(DTN)技術は,自律型ネットワークの基礎技術として期待されている。
DTNは、クローズドループシステムにおいて、リアルタイムに収集されたデータに基づいてネットワークを運用およびシステム化できるという利点がある。
DTNの使用を最適化するために、さまざまなAI研究と標準化作業が進行中である。
論文 参考訳(メタデータ) (2024-05-14T09:55:03Z) - Mapping Wireless Networks into Digital Reality through Joint Vertical and Horizontal Learning [26.54703150478879]
VH-Twinは、無線ネットワークをデジタルリアリティーにマッピングする時系列データ駆動フレームワークである。
V-ツインニングは分散学習技術を利用して、ネットワーククラスタから協調的にグローバルツインモデルを初期化する。
一方、H-ツインニングは、ネットワークや環境の変化に応じて動的に双子のモデルを更新する非同期マッピング方式で実装されている。
論文 参考訳(メタデータ) (2024-04-22T18:02:17Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - Digital Twin-Enhanced Deep Reinforcement Learning for Resource
Management in Networks Slicing [46.65030115953947]
本稿では,デジタルツインと強化学習エージェントからなるフレームワークを提案する。
具体的には、歴史的データとニューラルネットワークを用いて、実環境の状態変動則をシミュレートするデジタルツインモデルを構築することを提案する。
また、このフレームワークをオフラインで強化学習に拡張し、歴史的データのみに基づいたインテリジェントな意思決定にソリューションを利用できるようにします。
論文 参考訳(メタデータ) (2023-11-28T15:25:14Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
HSI(Deep Learning-based Hyperspectral Image)は、HSI(Hyperspectral Image)とMSI(Multispectral Image)を深層ニューラルネットワーク(DNN)に融合させることにより、高空間分解能HSI(HR-HSI)を生成することを目的としている。
本稿では, HSI-MSI 融合のためのデータ多様性を向上するために, HSI-MSI サンプルペアの自動最適化と拡張を行う新しい逆自動データ拡張フレームワーク ADASR を提案する。
論文 参考訳(メタデータ) (2023-10-11T07:30:37Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
次世代無線ネットワーク(例:6G)は人工知能(AI)ネイティブである。
本稿では、新たな因果推論分野を基盤として、AIネイティブな無線ネットワークを構築するための新しいフレームワークを紹介する。
因果発見と表現によって対処できる無線ネットワークの課題をいくつか挙げる。
論文 参考訳(メタデータ) (2023-09-23T00:05:39Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets [74.51865676466056]
本稿では,グラフ畳み込みネットワークとハイパー構造表現学習フレームワークを,精度,信頼性,計算効率のよい分散グリッド計画に活用する方法を示す。
数値実験の結果,提案手法は計算効率を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2022-11-14T01:29:09Z) - AI in 6G: Energy-Efficient Distributed Machine Learning for Multilayer
Heterogeneous Networks [7.318997639507269]
本稿では,ネットワーク層とエンティティにまたがるさまざまな機械学習手法に関連するタスクを分散する,階層ベースの新しいHetNetアーキテクチャを提案する。
このようなHetNetは、複数のアクセス方式と、エネルギー効率を高めるためのデバイス間通信(D2D)を備えている。
論文 参考訳(メタデータ) (2022-06-04T22:03:19Z) - Revisiting the double-well problem by deep learning with a hybrid
network [7.308730248177914]
本稿では,lstmとresnetの2種類のニューラルネットワークを統合するハイブリッドネットワークを提案する。
このようなハイブリッドネットワークは、空間的または時間的変調が速いシステムにおける協調ダイナミクスの解決に応用できる。
論文 参考訳(メタデータ) (2021-04-25T07:51:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。