Comparing Algorithms for Loading Classical Datasets into Quantum Memory
- URL: http://arxiv.org/abs/2407.15745v1
- Date: Mon, 22 Jul 2024 15:43:18 GMT
- Title: Comparing Algorithms for Loading Classical Datasets into Quantum Memory
- Authors: Andriy Miranskyy, Mushahid Khan, Udson Mendes,
- Abstract summary: We compare various algorithms for loading classical datasets into quantum memory.
We evaluate state preparation algorithms based on five key attributes.
We also visually compare three metrics (namely, circuit depth, qubit count, and classical runtime)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers are gaining importance in various applications like quantum machine learning and quantum signal processing. These applications face significant challenges in loading classical datasets into quantum memory. With numerous algorithms available and multiple quality attributes to consider, comparing data loading methods is complex. Our objective is to compare (in a structured manner) various algorithms for loading classical datasets into quantum memory (by converting statevectors to circuits). We evaluate state preparation algorithms based on five key attributes: circuit depth, qubit count, classical runtime, statevector representation (dense or sparse), and circuit alterability. We use the Pareto set as a multi-objective optimization tool to identify algorithms with the best combination of properties. To improve comprehension and speed up comparisons, we also visually compare three metrics (namely, circuit depth, qubit count, and classical runtime). We compare seven algorithms for dense statevector conversion and six for sparse statevector conversion. Our analysis reduces the initial set of algorithms to two dense and two sparse groups, highlighting inherent trade-offs. This comparison methodology offers a structured approach for selecting algorithms based on specific needs. Researchers and practitioners can use it to help select data-loading algorithms for various quantum computing tasks.
Related papers
- Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Indirect Quantum Approximate Optimization Algorithms: application to the
TSP [1.1786249372283566]
Quantum Alternating Operator Ansatz takes into consideration a general parameterized family of unitary operators to efficiently model the Hamiltonian describing the set of vectors.
This algorithm creates an efficient alternative to QAOA, where: 1) a Quantum parametrized circuit executed on a quantum machine models the set of string vectors; 2) a Classical meta-optimization loop executed on a classical machine; 3) an estimation of the average cost of each string vector computing.
arXiv Detail & Related papers (2023-11-06T17:39:14Z) - A Quantum-Inspired Binary Optimization Algorithm for Representative
Selection [0.0]
We propose a selector algorithm for selecting the most representative subset of data from a larger dataset.
The selector algorithm can be used to build a diversified portfolio from a more extensive selection of assets.
We show two use cases for the selector algorithm with real data.
arXiv Detail & Related papers (2023-01-04T22:07:22Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Quantum jet clustering with LHC simulated data [0.0]
Two new quantum algorithms might speed up classical jet clustering algorithms.
In the first two algorithms, an exponential speed up in dimensionality and data length can be achieved.
In the $k_T$ algorithm, a quantum version of the same order as FastJet is achieved.
arXiv Detail & Related papers (2022-09-19T10:51:13Z) - Variational Quantum and Quantum-Inspired Clustering [0.0]
We present a quantum algorithm for clustering data based on a variational quantum circuit.
The algorithm allows to classify data into many clusters, and can easily be implemented in few-qubit Noisy Intermediate-Scale Quantum (NISQ) devices.
arXiv Detail & Related papers (2022-06-20T17:02:19Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - A quantum binary classifier based on cosine similarity [0.0]
The proposed quantum algorithm evaluates the classifier on a set of data vectors with time complexity that is logarithmic in the product of the set cardinality and the dimension of the vectors.
We present a simple implementation of the considered classifier on the IBM quantum processor ibmq_16_melbourne.
arXiv Detail & Related papers (2021-04-07T07:55:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.