Efficient and generalizable prediction of molecular alterations in multiple cancer cohorts using H&E whole slide images
- URL: http://arxiv.org/abs/2407.15816v1
- Date: Mon, 22 Jul 2024 17:31:57 GMT
- Title: Efficient and generalizable prediction of molecular alterations in multiple cancer cohorts using H&E whole slide images
- Authors: Kshitij Ingale, Sun Hae Hong, Qiyuan Hu, Renyu Zhang, Bo Osinski, Mina Khoshdeli, Josh Och, Kunal Nagpal, Martin C. Stumpe, Rohan P. Joshi,
- Abstract summary: Molecular testing of tumor samples for targetable biomarkers is restricted by a lack of standardization.
Targetable alterations of low prevalence may not be tested in routine.
Algorithms that predict DNA alterations from H&E-stained images could prioritize samples for confirmatory molecular testing.
- Score: 2.578561815484769
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Molecular testing of tumor samples for targetable biomarkers is restricted by a lack of standardization, turnaround-time, cost, and tissue availability across cancer types. Additionally, targetable alterations of low prevalence may not be tested in routine workflows. Algorithms that predict DNA alterations from routinely generated hematoxylin and eosin (H&E)-stained images could prioritize samples for confirmatory molecular testing. Costs and the necessity of a large number of samples containing mutations limit approaches that train individual algorithms for each alteration. In this work, models were trained for simultaneous prediction of multiple DNA alterations from H&E images using a multi-task approach. Compared to biomarker-specific models, this approach performed better on average, with pronounced gains for rare mutations. The models reasonably generalized to independent temporal-holdout, externally-stained, and multi-site TCGA test sets. Additionally, whole slide image embeddings derived using multi-task models demonstrated strong performance in downstream tasks that were not a part of training. Overall, this is a promising approach to develop clinically useful algorithms that provide multiple actionable predictions from a single slide.
Related papers
- M4: Multi-Proxy Multi-Gate Mixture of Experts Network for Multiple Instance Learning in Histopathology Image Analysis [16.326593081399775]
We propose an adapted architecture of Multi-gate Mixture-of-experts with Multi-proxy for Multiple instance learning (M4)
Our model achieved significant improvements across five tested TCGA datasets in comparison to current state-of-the-art single-task methods.
arXiv Detail & Related papers (2024-07-24T13:30:46Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Deep Learning-Based Prediction of Molecular Tumor Biomarkers from H&E: A
Practical Review [0.0]
Molecular and genomic properties are critical in selecting cancer treatments to target individual tumors.
Applying machine learning to H&E images can provide a more cost-effective screening method.
This article reviews the diverse applications across cancer types and the methodology to train and validate these models.
arXiv Detail & Related papers (2022-11-27T14:57:41Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - InForecaster: Forecasting Influenza Hemagglutinin Mutations Through the
Lens of Anomaly Detection [3.5213888068272197]
anomaly detection (AD) is a well-established field in Machine Learning (ML)
We propose to tackle this challenge through anomaly detection (AD)
We conduct a large number of experiments on four publicly available datasets.
arXiv Detail & Related papers (2022-10-25T02:08:09Z) - A robust and lightweight deep attention multiple instance learning
algorithm for predicting genetic alterations [4.674211520843232]
We propose a novel Attention-based Multiple Instance Mutation Learning (AMIML) model for predicting gene mutations.
AMIML was comprised of successive 1-D convolutional layers, a decoder, and a residual weight connection to facilitate further integration of a lightweight attention mechanism.
AMIML demonstrated excellent robustness, not only outperforming all the five baseline algorithms in the vast majority of the tested genes, but also providing near-best-performance for the other seven genes.
arXiv Detail & Related papers (2022-05-31T15:45:29Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.