Collaborative Mean Estimation Among Heterogeneous Strategic Agents: Individual Rationality, Fairness, and Truthful Contribution
- URL: http://arxiv.org/abs/2407.15881v2
- Date: Mon, 23 Jun 2025 05:32:45 GMT
- Title: Collaborative Mean Estimation Among Heterogeneous Strategic Agents: Individual Rationality, Fairness, and Truthful Contribution
- Authors: Alex Clinton, Yiding Chen, Xiaojin Zhu, Kirthevasan Kandasamy,
- Abstract summary: We study a collaborative learning problem where $m$ agents aim to estimate a vector $mu =(mu_k, sigma2)_kin[d]$.<n>Instead of working independently, agents can exchange data, collecting cheaper samples and sharing them in return for costly data, thereby reducing both costs and estimation error.
- Score: 11.371461065112422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a collaborative learning problem where $m$ agents aim to estimate a vector $\mu =(\mu_1,\ldots,\mu_d)\in \mathbb{R}^d$ by sampling from associated univariate normal distributions $\{\mathcal{N}(\mu_k, \sigma^2)\}_{k\in[d]}$. Agent $i$ incurs a cost $c_{i,k}$ to sample from $\mathcal{N}(\mu_k, \sigma^2)$. Instead of working independently, agents can exchange data, collecting cheaper samples and sharing them in return for costly data, thereby reducing both costs and estimation error. We design a mechanism to facilitate such collaboration, while addressing two key challenges: ensuring individually rational (IR) and fair outcomes so all agents benefit, and preventing strategic behavior (e.g. non-collection, data fabrication) to avoid socially undesirable outcomes. We design a mechanism and an associated Nash equilibrium (NE) which minimizes the social penalty-sum of agents' estimation errors and collection costs-while being IR for all agents. We achieve a $\mathcal{O}(\sqrt{m})$-approximation to the minimum social penalty in the worst case and an $\mathcal{O}(1)$-approximation under favorable conditions. Additionally, we establish three hardness results: no nontrivial mechanism guarantees (i) a dominant strategy equilibrium where agents report truthfully, (ii) is IR for every strategy profile of other agents, (iii) or avoids a worst-case $\Omega(\sqrt{m})$ price of stability in any NE. Finally, by integrating concepts from axiomatic bargaining, we demonstrate that our mechanism supports fairer outcomes than one which minimizes social penalty.
Related papers
- On the optimal regret of collaborative personalized linear bandits [15.661920010658626]
This paper investigates the optimal regret achievable in collaborative personalized linear bandits.<n>We provide an information-theoretic lower bound that characterizes how the number of agents, the interaction rounds, and the degree of heterogeneity jointly affect regret.<n>Our results offer a complete characterization of when and how collaboration helps with a optimal regret bound.
arXiv Detail & Related papers (2025-06-19T00:56:31Z) - Towards a Sharp Analysis of Offline Policy Learning for $f$-Divergence-Regularized Contextual Bandits [49.96531901205305]
We analyze $f$-divergence-regularized offline policy learning.<n>For reverse Kullback-Leibler (KL) divergence, we give the first $tildeO(epsilon-1)$ sample complexity under single-policy concentrability.<n>We extend our analysis to dueling bandits, and we believe these results take a significant step toward a comprehensive understanding of $f$-divergence-regularized policy learning.
arXiv Detail & Related papers (2025-02-09T22:14:45Z) - Minimax-Optimal Multi-Agent Robust Reinforcement Learning [7.237817437521988]
We extend the Q-FTRL algorithm citepli2022minimax to the RMGs in finite-horizon setting, assuming access to a generative model.<n>We prove that the proposed algorithm achieves an $varepsilon$-robust coarse correlated equilibrium (CCE) with a sample complexity (up to log factors) of $widetildeOleft(H3Ssum_i=1mA_iminleftH,1/Rright/varepsilon2right), where $S$ denotes the
arXiv Detail & Related papers (2024-12-27T16:37:33Z) - Cooperative Multi-Agent Constrained Stochastic Linear Bandits [2.099922236065961]
A network of $N$ agents communicate locally to minimize their collective regret while keeping their expected cost under a specified threshold $tau$.
We propose a safe distributed upper confidence bound algorithm, so called textitMA-OPLB, and establish a high probability bound on its $T$-round regret.
We show that our regret bound is of order $ mathcalOleft(fracdtau-c_0fraclog(NT)2sqrtNsqrtTlog (1/|lambda|)
arXiv Detail & Related papers (2024-10-22T19:34:53Z) - Inverse Entropic Optimal Transport Solves Semi-supervised Learning via Data Likelihood Maximization [65.8915778873691]
conditional distributions is a central problem in machine learning.
We propose a new learning paradigm that integrates both paired and unpaired data.
Our approach also connects intriguingly with inverse entropic optimal transport (OT)
arXiv Detail & Related papers (2024-10-03T16:12:59Z) - Semidefinite programming relaxations and debiasing for MAXCUT-based clustering [1.9761774213809036]
We consider the problem of partitioning a small data sample of size $n$ drawn from a mixture of 2 sub-gaussian distributions in $mathbbRp$.<n>We use semidefinite programming relaxations of an integer quadratic program that is formulated as finding the maximum cut on a graph.
arXiv Detail & Related papers (2024-01-16T03:14:24Z) - Settling the Sample Complexity of Online Reinforcement Learning [92.02082223856479]
We show how to achieve minimax-optimal regret without incurring any burn-in cost.<n>We extend our theory to unveil the influences of problem-dependent quantities like the optimal value/cost and certain variances.
arXiv Detail & Related papers (2023-07-25T15:42:11Z) - Collaboratively Learning Linear Models with Structured Missing Data [3.4376560669160394]
We study the problem of collaboratively least squares estimates for $magents.
Our goal is to determine how to coordinate the agents in learning to produce the best estimator for each agent.
arXiv Detail & Related papers (2023-07-22T00:07:10Z) - Scalable Primal-Dual Actor-Critic Method for Safe Multi-Agent RL with
General Utilities [12.104551746465932]
We investigate safe multi-agent reinforcement learning, where agents seek to collectively maximize an aggregate sum of local objectives while satisfying their own safety constraints.
Our algorithm converges to a first-order stationary point (FOSP) at the rate of $mathcalOleft(T-2/3right)$.
In the sample-based setting, we demonstrate that, with high probability, our algorithm requires $widetildemathcalOleft(epsilon-3.5right)$ samples to achieve an $epsilon$-FOSP.
arXiv Detail & Related papers (2023-05-27T20:08:35Z) - Stochastic Approximation Approaches to Group Distributionally Robust Optimization and Beyond [89.72693227960274]
This paper investigates group distributionally robust optimization (GDRO) with the goal of learning a model that performs well over $m$ different distributions.
To reduce the number of samples in each round from $m$ to 1, we cast GDRO as a two-player game, where one player conducts and the other executes an online algorithm for non-oblivious multi-armed bandits.
In the second scenario, we propose to optimize the average top-$k$ risk instead of the maximum risk, thereby mitigating the impact of distributions.
arXiv Detail & Related papers (2023-02-18T09:24:15Z) - Impact of Redundancy on Resilience in Distributed Optimization and
Learning [4.664766612388049]
This report considers the problem of resilient distributed optimization and learning in a server-based architecture.
The system comprises a server and multiple agents, where each agent has its own local cost function.
We show that $(f, r; epsilon)$-resilience can indeed be achieved in practice, given that the local cost functions are sufficiently redundant.
arXiv Detail & Related papers (2022-11-16T02:23:34Z) - Quantization for decentralized learning under subspace constraints [61.59416703323886]
We consider decentralized optimization problems where agents have individual cost functions to minimize subject to subspace constraints.
We propose and study an adaptive decentralized strategy where the agents employ differential randomized quantizers to compress their estimates.
The analysis shows that, under some general conditions on the quantization noise, the strategy is stable both in terms of mean-square error and average bit rate.
arXiv Detail & Related papers (2022-09-16T09:38:38Z) - Truthful Generalized Linear Models [9.766078137988936]
We study estimating Generalized Linear Models (GLMs) in the case where the agents (individuals) are strategic or self-interested.
By using an $ell_4$-norm shrinkage operator, we propose a private estimator and payment scheme which have similar properties as in the sub-Gaussian case.
arXiv Detail & Related papers (2022-09-16T09:28:08Z) - Mechanisms that Incentivize Data Sharing in Federated Learning [90.74337749137432]
We show how a naive scheme leads to catastrophic levels of free-riding where the benefits of data sharing are completely eroded.
We then introduce accuracy shaping based mechanisms to maximize the amount of data generated by each agent.
arXiv Detail & Related papers (2022-07-10T22:36:52Z) - Distributed Bandits with Heterogeneous Agents [38.90376765616447]
This paper tackles a multi-agent bandit setting where $M$ agents cooperate together to solve the same instance of a $K$-armed bandit problem.
We propose two learning algorithms, ucbo and AAE.
We prove that both algorithms achieve order-optimal regret, which is $Oleft(sum_i:tildeDelta_i>0 log T/tildeDelta_iright)$, where $tildeDelta_i$ is the minimum suboptimality gap between the reward mean of
arXiv Detail & Related papers (2022-01-23T20:04:15Z) - Permutation Compressors for Provably Faster Distributed Nonconvex
Optimization [68.8204255655161]
We show that the MARINA method of Gorbunov et al (2021) can be considered as a state-of-the-art method in terms of theoretical communication complexity.
Theory of MARINA to support the theory of potentially em correlated compressors, extends to the method beyond the classical independent compressors setting.
arXiv Detail & Related papers (2021-10-07T09:38:15Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z) - Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal
Sample Complexity [67.02490430380415]
We show that model-based MARL achieves a sample complexity of $tilde O(|S||B|(gamma)-3epsilon-2)$ for finding the Nash equilibrium (NE) value up to some $epsilon$ error.
We also show that such a sample bound is minimax-optimal (up to logarithmic factors) if the algorithm is reward-agnostic, where the algorithm queries state transition samples without reward knowledge.
arXiv Detail & Related papers (2020-07-15T03:25:24Z) - A Provably Efficient Sample Collection Strategy for Reinforcement
Learning [123.69175280309226]
One of the challenges in online reinforcement learning (RL) is that the agent needs to trade off the exploration of the environment and the exploitation of the samples to optimize its behavior.
We propose to tackle the exploration-exploitation problem following a decoupled approach composed of: 1) An "objective-specific" algorithm that prescribes how many samples to collect at which states, as if it has access to a generative model (i.e., sparse simulator of the environment); 2) An "objective-agnostic" sample collection responsible for generating the prescribed samples as fast as possible.
arXiv Detail & Related papers (2020-07-13T15:17:35Z) - Toward Adversarial Robustness via Semi-supervised Robust Training [93.36310070269643]
Adrial examples have been shown to be the severe threat to deep neural networks (DNNs)
We propose a novel defense method, the robust training (RT), by jointly minimizing two separated risks ($R_stand$ and $R_rob$)
arXiv Detail & Related papers (2020-03-16T02:14:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.