Vulnerabilities of smart contracts and mitigation schemes: A Comprehensive Survey
- URL: http://arxiv.org/abs/2403.19805v2
- Date: Mon, 8 Apr 2024 18:33:46 GMT
- Title: Vulnerabilities of smart contracts and mitigation schemes: A Comprehensive Survey
- Authors: Wejdene Haouari, Abdelhakim Senhaji Hafid, Marios Fokaefs,
- Abstract summary: This paper presents a literature review combined with an experimental report that aims to assist developers in developing secure smarts.
It provides a list of frequent vulnerabilities and corresponding mitigation solutions.
It evaluates the community most widely used tools by executing and testing them on sample smart contracts.
- Score: 0.6554326244334866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ethereum smart contracts are highly powerful, immutable, and able to retain massive amounts of tokens. However, smart contracts keep attracting attackers to benefit from smart contract flaws and Ethereum unexpected behavior. Thus, methodologies and tools have been proposed to help implement secure smart contracts and to evaluate the security of smart contracts already deployed. Most related surveys focus on tools without discussing the logic behind them. in addition, they assess the tools based on papers rather than testing the tools and collecting community feedback. Other surveys lack guidelines on how to use tools specific to smart contract functionalities. This paper presents a literature review combined with an experimental report that aims to assist developers in developing secure smarts, with a novel emphasis on the challenges and vulnerabilities introduced by NFT fractionalization by addressing the unique risks of dividing NFT ownership into tradeable units called fractions. It provides a list of frequent vulnerabilities and corresponding mitigation solutions. In addition, it evaluates the community most widely used tools by executing and testing them on sample smart contracts. Finally, a comprehensive guide on implementing secure smart contracts is presented.
Related papers
- Vulnerability Detection in Ethereum Smart Contracts via Machine Learning: A Qualitative Analysis [0.0]
We analyze the state of the art in machine-learning vulnerability detection for smart contracts.
We discuss best practices to enhance the accuracy, scope, and efficiency of vulnerability detection in smart contracts.
arXiv Detail & Related papers (2024-07-26T10:09:44Z) - Versioned Analysis of Software Quality Indicators and Self-admitted Technical Debt in Ethereum Smart Contracts with Ethstractor [2.052808596154225]
This paper proposes Ethstractor, the first smart contract collection tool for gathering a dataset of versioned smart contracts.
The collected dataset is then used to evaluate the reliability of code metrics as indicators of vulnerabilities in smart contracts.
arXiv Detail & Related papers (2024-07-22T18:27:29Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
We propose a theoretical framework for aligning economic interests of different stakeholders in the online learning problems through contract design.
For the planning problem, we design an efficient dynamic programming algorithm to determine the optimal contracts against the far-sighted agent.
For the learning problem, we introduce a generic design of no-regret learning algorithms to untangle the challenges from robust design of contracts to the balance of exploration and exploitation.
arXiv Detail & Related papers (2024-07-01T16:53:00Z) - A security framework for Ethereum smart contracts [13.430752634838539]
This article presents ESAF, a framework for analysis of smart contracts.
It aims to unify and facilitate the task of analyzing smart contract vulnerabilities.
It can be used as a persistent security monitoring tool for a set of target contracts as well as a classic vulnerability analysis tool among other uses.
arXiv Detail & Related papers (2024-02-05T22:14:21Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars.
Various tools have been developed to detect and mitigate vulnerabilities in smart contracts.
This study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice.
arXiv Detail & Related papers (2023-12-27T11:26:26Z) - Formally Verifying a Real World Smart Contract [52.30656867727018]
We search for a tool capable of formally verifying a real-world smart contract written in a recent version of Solidity.
In this article, we present our search for a tool capable of formally verifying a real-world smart contract written in a recent version of Solidity.
arXiv Detail & Related papers (2023-07-05T14:30:21Z) - SmartBugs 2.0: An Execution Framework for Weakness Detection in Ethereum
Smart Contracts [0.757843972001219]
Smart contracts are blockchain programs that often handle valuable assets.
To support developers in identifying and eliminating vulnerabilities, methods and tools for the automated analysis have been proposed.
We present SmartBugs 2.0, a modular execution framework for smart contract analysis.
arXiv Detail & Related papers (2023-06-08T09:22:25Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z) - Pre-deployment Analysis of Smart Contracts -- A Survey [0.27195102129095]
We present a systematic review of the literature on smart contract vulnerabilities and methods.
Specifically, we enumerate and classify smart contract vulnerabilities and methods by the properties they address.
Several patterns about the strengths of different methods emerge through this classification process.
arXiv Detail & Related papers (2023-01-15T12:36:56Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
Conventional smart contract vulnerability detection methods heavily rely on fixed expert rules.
Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge.
We develop automatic tools to extract expert patterns from the source code.
We then cast the code into a semantic graph to extract deep graph features.
arXiv Detail & Related papers (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.