Efficient variational quantum eigensolver methodologies on quantum processors
- URL: http://arxiv.org/abs/2407.16107v1
- Date: Tue, 23 Jul 2024 00:38:34 GMT
- Title: Efficient variational quantum eigensolver methodologies on quantum processors
- Authors: Tushar Pandey, Jason Saroni, Abdullah Kazi, Kartik Sharma,
- Abstract summary: We implement adaptive, tetris-adaptive variational quantum eigensolver (VQE) and entanglement forging to reduce computational resource requirements.
Our results affirm the usefulness of VQE on noisy quantum hardware and pave the way for the usage of VQE related methods for large molecules.
- Score: 4.192048933715544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We compare the performance of different methodologies for finding the ground state of the molecule BeH2. We implement adaptive, tetris-adaptive variational quantum eigensolver (VQE), and entanglement forging to reduce computational resource requirements. We run VQE experiments on IBM quantum processing units and use error mitigation, including twirled readout error extinction (TREX) and zero-noise extrapolation (ZNE) to reduce noise. Our results affirm the usefulness of VQE on noisy quantum hardware and pave the way for the usage of VQE related methods for large molecules.
Related papers
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Real-time error mitigation for variational optimization on quantum
hardware [45.935798913942904]
We define a Real Time Quantum Error Mitigation (RTQEM) algorithm to assist in fitting functions on quantum chips with VQCs.
Our RTQEM routine can enhance VQCs' trainability by reducing the corruption of the loss function.
arXiv Detail & Related papers (2023-11-09T19:00:01Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy processors.
gate noise due to imperfections and decoherence affects the gradient estimates by introducing a bias.
Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits.
QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small.
arXiv Detail & Related papers (2022-09-23T10:48:04Z) - Variational Quantum Pulse Learning [28.040754288931897]
We propose variational quantum pulses (VQP), a novel paradigm to directly train quantum pulses for learning tasks.
VQP manipulates variational quantum pulses by pulling and pushing the amplitudes of pulses in an optimization framework.
Our framework to train pulses maintains the robustness to noise on Noisy Intermediate-Scale Quantum (NISQ) computers.
arXiv Detail & Related papers (2022-03-31T17:58:13Z) - Error mitigation in variational quantum eigensolvers using tailored
probabilistic machine learning [5.630204194930539]
We present a novel method that employs parametric Gaussian process regression (GPR) within an active learning framework to mitigate noise in quantum computations.
We demonstrate the effectiveness of our method on a 2-site Anderson impurity model and a 8-site Heisenberg model, using the IBM open-source quantum computing framework, Qiskit.
arXiv Detail & Related papers (2021-11-16T22:29:43Z) - The Cost of Improving the Precision of the Variational Quantum
Eigensolver for Quantum Chemistry [0.0]
We study how various types of errors affect the variational quantum eigensolver (VQE)
We find that the optimal way of running the hybrid classical-quantum optimization is to allow some noise in intermediate energy evaluations.
arXiv Detail & Related papers (2021-11-09T06:24:52Z) - Variational quantum eigensolver techniques for simulating carbon
monoxide oxidation [0.0]
We push forward the capabilities of adaptive variational algorithms (ADAPT-VQE)
Within the proposed approach, we simulate a set of molecules, O$$, CO, and CO$.
Based on these results, we estimate the energy characteristics of the chemical reaction.
arXiv Detail & Related papers (2021-08-25T10:38:03Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Classical Optimizers for Noisy Intermediate-Scale Quantum Devices [1.43494686131174]
We present a collection of tunings tuned for usage on Noisy Intermediate-Scale Quantum (NISQ) devices.
We analyze the efficiency and effectiveness of different minimizes in a VQE case study.
While most results to date concentrated on tuning the quantum VQE circuit, we show that, in the presence of quantum noise, the classical minimizer step needs to be carefully chosen to obtain correct results.
arXiv Detail & Related papers (2020-04-06T21:31:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.