Transformer-based Graph Neural Networks for Battery Range Prediction in AIoT Battery-Swap Services
- URL: http://arxiv.org/abs/2407.16115v1
- Date: Tue, 23 Jul 2024 01:33:21 GMT
- Title: Transformer-based Graph Neural Networks for Battery Range Prediction in AIoT Battery-Swap Services
- Authors: Zhao Li, Yang Liu, Chuan Zhou, Xuanwu Liu, Xuming Pan, Buqing Cao, Xindong Wu,
- Abstract summary: The concept of the sharing economy has gained broad recognition, and within this context, Sharing E-Bike Battery have emerged as a focal point of societal interest.
Despite the popularity, a notable discrepancy remains between user expectations regarding the remaining battery range of SEBs and the reality.
We propose a novel structural Transformer-based model, referred to as the SEB-Transformer, designed specifically for predicting the battery range of SEBs.
- Score: 17.973385522511265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The concept of the sharing economy has gained broad recognition, and within this context, Sharing E-Bike Battery (SEB) have emerged as a focal point of societal interest. Despite the popularity, a notable discrepancy remains between user expectations regarding the remaining battery range of SEBs and the reality, leading to a pronounced inclination among users to find an available SEB during emergency situations. In response to this challenge, the integration of Artificial Intelligence of Things (AIoT) and battery-swap services has surfaced as a viable solution. In this paper, we propose a novel structural Transformer-based model, referred to as the SEB-Transformer, designed specifically for predicting the battery range of SEBs. The scenario is conceptualized as a dynamic heterogeneous graph that encapsulates the interactions between users and bicycles, providing a comprehensive framework for analysis. Furthermore, we incorporate the graph structure into the SEB-Transformer to facilitate the estimation of the remaining e-bike battery range, in conjunction with mean structural similarity, enhancing the prediction accuracy. By employing the predictions made by our model, we are able to dynamically adjust the optimal cycling routes for users in real-time, while also considering the strategic locations of charging stations, thereby optimizing the user experience. Empirically our results on real-world datasets demonstrate the superiority of our model against nine competitive baselines. These innovations, powered by AIoT, not only bridge the gap between user expectations and the physical limitations of battery range but also significantly improve the operational efficiency and sustainability of SEB services. Through these advancements, the shared electric bicycle ecosystem is evolving, making strides towards a more reliable, user-friendly, and sustainable mode of transportation.
Related papers
- Attention-based Citywide Electric Vehicle Charging Demand Prediction Approach Considering Urban Region and Dynamic Influences [5.687001127686438]
We propose an attention-based heterogeneous data fusion approach (ADF) for electric vehicle charging demand prediction.
To learn non-pairwise relationships, we cluster service areas by the types and numbers of points of interest in the areas.
We demonstrate the impact of dynamic influences on prediction results in different areas of the city and the effectiveness of our clustering method.
arXiv Detail & Related papers (2024-10-24T14:19:38Z) - Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving [55.93813178692077]
We present RoboBEV, an extensive benchmark suite designed to evaluate the resilience of BEV algorithms.
We assess 33 state-of-the-art BEV-based perception models spanning tasks like detection, map segmentation, depth estimation, and occupancy prediction.
Our experimental results also underline the efficacy of strategies like pre-training and depth-free BEV transformations in enhancing robustness against out-of-distribution data.
arXiv Detail & Related papers (2024-05-27T17:59:39Z) - Forecasting Auxiliary Energy Consumption for Electric Heavy-Duty
Vehicles [6.375656754994484]
Energy consumption prediction is crucial for optimizing the operation of electric commercial heavy-duty vehicles.
In this paper, we demonstrate a potential solution by training multiple regression models on subsets of data.
Experiments on both synthetic and real-world datasets show that such splitting of a complex problem into simpler ones yields better regression performance and interpretability.
arXiv Detail & Related papers (2023-11-27T16:52:25Z) - Model-based Causal Bayesian Optimization [74.78486244786083]
We introduce the first algorithm for Causal Bayesian Optimization with Multiplicative Weights (CBO-MW)
We derive regret bounds for CBO-MW that naturally depend on graph-related quantities.
Our experiments include a realistic demonstration of how CBO-MW can be used to learn users' demand patterns in a shared mobility system.
arXiv Detail & Related papers (2023-07-31T13:02:36Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Deep trip generation with graph neural networks for bike sharing system
expansion [7.737133861503814]
We propose a graph neural network (GNN) approach to predicting the station-level demand based on multi-source urban built environment data.
The proposed approach can be regarded as a generalized spatial regression model, indicating the commonalities between spatial regression and GNNs.
arXiv Detail & Related papers (2023-03-20T16:43:41Z) - Transfer Learning and Vision Transformer based State-of-Health
prediction of Lithium-Ion Batteries [1.2468700211588883]
Accurately predicting the state of health (SOH) can not only ease the anxiety of users about the battery life but also provide important information for the management of the battery.
This paper presents a prediction method for SOH based on Vision Transformer (ViT) model.
arXiv Detail & Related papers (2022-09-07T16:54:15Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - A Cluster-Based Trip Prediction Graph Neural Network Model for Bike
Sharing Systems [2.1423963702744597]
Bike Sharing Systems (BSSs) are emerging as an innovative transportation service.
Ensuring the proper functioning of a BSS is crucial given that these systems are committed to eradicating many of the current global concerns.
Good knowledge of users' transition patterns is a decisive contribution to the quality and operability of the service.
arXiv Detail & Related papers (2022-01-03T15:47:40Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.