Chameleon: Images Are What You Need For Multimodal Learning Robust To Missing Modalities
- URL: http://arxiv.org/abs/2407.16243v1
- Date: Tue, 23 Jul 2024 07:29:57 GMT
- Title: Chameleon: Images Are What You Need For Multimodal Learning Robust To Missing Modalities
- Authors: Muhammad Irzam Liaqat, Shah Nawaz, Muhammad Zaigham Zaheer, Muhammad Saad Saeed, Hassan Sajjad, Tom De Schepper, Karthik Nandakumar, Muhammad Haris Khan Markus Schedl,
- Abstract summary: Multimodal learning methods often exhibit deteriorated performances if one or more modalities are missing.
We propose a robust textual-visual multimodal learning method, Chameleon, that completely deviates from the conventional multi-branch design.
Experiments are performed on four popular datasets including Hateful Memes, UPMC Food-101, MM-IMDb, and Ferramenta.
- Score: 17.723207830420996
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal learning has demonstrated remarkable performance improvements over unimodal architectures. However, multimodal learning methods often exhibit deteriorated performances if one or more modalities are missing. This may be attributed to the commonly used multi-branch design containing modality-specific streams making the models reliant on the availability of a complete set of modalities. In this work, we propose a robust textual-visual multimodal learning method, Chameleon, that completely deviates from the conventional multi-branch design. To enable this, we present the unification of input modalities into one format by encoding textual modality into visual representations. As a result, our approach does not require modality-specific branches to learn modality-independent multimodal representations making it robust to missing modalities. Extensive experiments are performed on four popular challenging datasets including Hateful Memes, UPMC Food-101, MM-IMDb, and Ferramenta. Chameleon not only achieves superior performance when all modalities are present at train/test time but also demonstrates notable resilience in the case of missing modalities.
Related papers
- Modality Invariant Multimodal Learning to Handle Missing Modalities: A Single-Branch Approach [29.428067329993173]
We propose a modality invariant multimodal learning method, which is less susceptible to the impact of missing modalities.
It consists of a single-branch network sharing weights across multiple modalities to learn inter-modality representations to maximize performance.
Our proposed method achieves superior performance when all modalities are present as well as in the case of missing modalities during training or testing compared to the existing state-of-the-art methods.
arXiv Detail & Related papers (2024-08-14T10:32:16Z) - Learning Modality-agnostic Representation for Semantic Segmentation from Any Modalities [8.517830626176641]
Any2Seg is a novel framework that can achieve robust segmentation from any combination of modalities in any visual conditions.
Experiments on two benchmarks with four modalities demonstrate that Any2Seg achieves the state-of-the-art under the multi-modal setting.
arXiv Detail & Related papers (2024-07-16T03:34:38Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - What Makes for Robust Multi-Modal Models in the Face of Missing
Modalities? [35.19295402483624]
We model the scenarios of multi-modal models encountering missing modalities from an information-theoretic perspective.
We introduce Uni-Modal Ensemble with Missing Modality Adaptation (UME-MMA)
UME-MMA employs uni-modal pre-trained weights for the multi-modal model to enhance feature extraction and utilizes missing modality data augmentation techniques to better adapt to situations with missing modalities.
arXiv Detail & Related papers (2023-10-10T07:47:57Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - On Uni-Modal Feature Learning in Supervised Multi-Modal Learning [21.822251958013737]
We abstract the features (i.e. learned representations) of multi-modal data into 1) uni-modal features, which can be learned from uni-modal training, and 2) paired features, which can only be learned from cross-modal interactions.
We demonstrate that, under a simple guiding strategy, we can achieve comparable results to other complex late-fusion or intermediate-fusion methods on various multi-modal datasets.
arXiv Detail & Related papers (2023-05-02T07:15:10Z) - Learning Multimodal Data Augmentation in Feature Space [65.54623807628536]
LeMDA is an easy-to-use method that automatically learns to jointly augment multimodal data in feature space.
We show that LeMDA can profoundly improve the performance of multimodal deep learning architectures.
arXiv Detail & Related papers (2022-12-29T20:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.