Navigating Uncertainty in Medical Image Segmentation
- URL: http://arxiv.org/abs/2407.16367v1
- Date: Tue, 23 Jul 2024 10:21:18 GMT
- Title: Navigating Uncertainty in Medical Image Segmentation
- Authors: Kilian Zepf, Jes Frellsen, Aasa Feragen,
- Abstract summary: We address the selection and evaluation of uncertain segmentation methods in medical imaging.
We present two case studies: prostate segmentation, illustrating that for minimal annotator variation simple deterministic models can suffice.
Our findings lead to guidelines for accurately choosing and developing uncertain segmentation models.
- Score: 13.12913475818328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the selection and evaluation of uncertain segmentation methods in medical imaging and present two case studies: prostate segmentation, illustrating that for minimal annotator variation simple deterministic models can suffice, and lung lesion segmentation, highlighting the limitations of the Generalized Energy Distance (GED) in model selection. Our findings lead to guidelines for accurately choosing and developing uncertain segmentation models, that integrate aleatoric and epistemic components. These guidelines are designed to aid researchers and practitioners in better developing, selecting, and evaluating uncertain segmentation methods, thereby facilitating enhanced adoption and effective application of segmentation uncertainty in practice.
Related papers
- SPA: Efficient User-Preference Alignment against Uncertainty in Medical Image Segmentation [8.34233304138989]
textbfSPA efficiently adapts to diverse test-time preferences with minimal human interaction.
It reduces clinician workload in reaching the preferred segmentation.
It demonstrates 1) a significant reduction in clinician time and effort compared with existing interactive segmentation approaches.
arXiv Detail & Related papers (2024-11-23T10:27:08Z) - Optimized Vessel Segmentation: A Structure-Agnostic Approach with Small Vessel Enhancement and Morphological Correction [7.882674026364302]
We propose a structure-agnostic approach incorporating small vessel enhancement and morphological correction for multi-modality vessel segmentation.
Our approach achieves superior segmentation accuracy, generalization, and a 34.6% improvement in connectivity, underscoring its clinical potential.
arXiv Detail & Related papers (2024-11-22T08:38:30Z) - MedUHIP: Towards Human-In-the-Loop Medical Segmentation [5.520419627866446]
Medical image segmentation is particularly complicated by inherent uncertainties.
We propose a novel approach that integrates an textbfuncertainty-aware model with textbfhuman-in-the-loop interaction
Our method showcases superior segmentation capabilities, outperforming a wide range of deterministic and uncertainty-aware models.
arXiv Detail & Related papers (2024-08-03T01:06:02Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Lung Nodule Segmentation and Uncertain Region Prediction with an
Uncertainty-Aware Attention Mechanism [30.298653876400003]
Radiologists possess diverse training and clinical experiences, leading to variations in the segmentation of lung nodules.
Conventional methods typically select a single annotation as the learning target or attempt to learn a latent space comprising multiple annotations.
We propose an Uncertainty-Aware Attention Mechanism (UAAM) that utilizes consensus and disagreements among multiple annotations to facilitate better segmentation.
arXiv Detail & Related papers (2023-03-15T07:31:55Z) - Multi-Modal Evaluation Approach for Medical Image Segmentation [4.989480853499916]
We propose a novel multi-modal evaluation (MME) approach to measure the effectiveness of different segmentation methods.
We introduce new relevant and interpretable characteristics, including detection property, boundary alignment, uniformity, total volume, and relative volume.
Our proposed approach is open-source and publicly available for use.
arXiv Detail & Related papers (2023-02-08T15:31:33Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical
Image Segmentation [92.9634065964963]
We present a new semi-supervised segmentation model, namely, conservative-radical network (CoraNet) based on our uncertainty estimation and separate self-training strategy.
Compared with the current state of the art, our CoraNet has demonstrated superior performance.
arXiv Detail & Related papers (2021-10-17T08:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.