Optimized Vessel Segmentation: A Structure-Agnostic Approach with Small Vessel Enhancement and Morphological Correction
- URL: http://arxiv.org/abs/2411.15251v1
- Date: Fri, 22 Nov 2024 08:38:30 GMT
- Title: Optimized Vessel Segmentation: A Structure-Agnostic Approach with Small Vessel Enhancement and Morphological Correction
- Authors: Dongning Song, Weijian Huang, Jiarun Liu, Md Jahidul Islam, Hao Yang, Shanshan Wang,
- Abstract summary: We propose a structure-agnostic approach incorporating small vessel enhancement and morphological correction for multi-modality vessel segmentation.
Our approach achieves superior segmentation accuracy, generalization, and a 34.6% improvement in connectivity, underscoring its clinical potential.
- Score: 7.882674026364302
- License:
- Abstract: Accurate segmentation of blood vessels is essential for various clinical assessments and postoperative analyses. However, the inherent challenges of vascular imaging, such as sparsity, fine granularity, low contrast, data distribution variability, and the critical need for preserving topological structure, making generalized vessel segmentation particularly complex. While specialized segmentation methods have been developed for specific anatomical regions, their over-reliance on tailored models hinders broader applicability and generalization. General-purpose segmentation models introduced in medical imaging often fail to address critical vascular characteristics, including the connectivity of segmentation results. To overcome these limitations, we propose an optimized vessel segmentation framework: a structure-agnostic approach incorporating small vessel enhancement and morphological correction for multi-modality vessel segmentation. To train and validate this framework, we compiled a comprehensive multi-modality dataset spanning 17 datasets and benchmarked our model against six SAM-based methods and 17 expert models. The results demonstrate that our approach achieves superior segmentation accuracy, generalization, and a 34.6% improvement in connectivity, underscoring its clinical potential. An ablation study further validates the effectiveness of the proposed improvements. We will release the code and dataset at github following the publication of this work.
Related papers
- Adversarial Vessel-Unveiling Semi-Supervised Segmentation for Retinopathy of Prematurity Diagnosis [9.683492465191241]
We propose a semi supervised segmentation framework designed to advance ROP studies without the need for extensive manual vessel annotation.
Unlike previous methods that rely solely on limited labeled data, our approach integrates uncertainty weighted vessel unveiling module and domain adversarial learning.
We validate our approach on public datasets and an in-house ROP dataset, demonstrating its superior performance across multiple evaluation metrics.
arXiv Detail & Related papers (2024-11-14T02:40:34Z) - Deep vessel segmentation with joint multi-prior encoding [2.8518403379315127]
We propose a new joint prior encoding mechanism which incorporates both shape and topology in a single latent space.
The effectiveness of our method is demonstrated on the publicly available 3D-IRCADb dataset.
arXiv Detail & Related papers (2024-09-18T22:03:46Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
We propose a novel framework, called MedCLIP-SAM, that combines CLIP and SAM models to generate segmentation of clinical scans.
By extensively testing three diverse segmentation tasks and medical image modalities, our proposed framework has demonstrated excellent accuracy.
arXiv Detail & Related papers (2024-03-29T15:59:11Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - GAEI-UNet: Global Attention and Elastic Interaction U-Net for Vessel
Image Segmentation [0.0]
Vessel image segmentation plays a pivotal role in medical diagnostics, aiding in the early detection and treatment of vascular diseases.
We propose GAEI-UNet, a novel model that combines global attention and elastic interaction-based techniques.
By capturing the forces generated by misalignment between target and predicted shapes, our model effectively learns to preserve the correct topology of vessel networks.
arXiv Detail & Related papers (2023-08-16T13:10:32Z) - Adaptive Semi-Supervised Segmentation of Brain Vessels with Ambiguous
Labels [63.415444378608214]
Our approach incorporates innovative techniques including progressive semi-supervised learning, adaptative training strategy, and boundary enhancement.
Experimental results on 3DRA datasets demonstrate the superiority of our method in terms of mesh-based segmentation metrics.
arXiv Detail & Related papers (2023-08-07T14:16:52Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Learning to Segment Anatomical Structures Accurately from One Exemplar [34.287877547953194]
Methods that permit to produce accurate anatomical structure segmentation without using a large amount of fully annotated training images are highly desirable.
We propose Contour Transformer Network (CTN), a one-shot anatomy segmentor including a naturally built-in human-in-the-loop mechanism.
We demonstrate that our one-shot learning method significantly outperforms non-learning-based methods and performs competitively to the state-of-the-art fully supervised deep learning approaches.
arXiv Detail & Related papers (2020-07-06T20:27:38Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.