論文の概要: Psychomatics -- A Multidisciplinary Framework for Understanding Artificial Minds
- arxiv url: http://arxiv.org/abs/2407.16444v1
- Date: Tue, 23 Jul 2024 12:53:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 17:16:18.458567
- Title: Psychomatics -- A Multidisciplinary Framework for Understanding Artificial Minds
- Title(参考訳): 心理学 - 人工心を理解するための多分野のフレームワーク
- Authors: Giuseppe Riva, Fabrizia Mantovani, Brenda K. Wiederhold, Antonella Marchetti, Andrea Gaggioli,
- Abstract要約: 本稿では,認知科学,言語学,コンピュータ科学を橋渡しする心理学を紹介する。
LLMの高レベル機能をよりよく理解することを目的としている。
心理学は、言語の性質、認知、知性に関する変革的な洞察を与える可能性を秘めている。
- 参考スコア(独自算出の注目度): 0.319565400223685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although LLMs and other artificial intelligence systems demonstrate cognitive skills similar to humans, like concept learning and language acquisition, the way they process information fundamentally differs from biological cognition. To better understand these differences this paper introduces Psychomatics, a multidisciplinary framework bridging cognitive science, linguistics, and computer science. It aims to better understand the high-level functioning of LLMs, focusing specifically on how LLMs acquire, learn, remember, and use information to produce their outputs. To achieve this goal, Psychomatics will rely on a comparative methodology, starting from a theory-driven research question - is the process of language development and use different in humans and LLMs? - drawing parallels between LLMs and biological systems. Our analysis shows how LLMs can map and manipulate complex linguistic patterns in their training data. Moreover, LLMs can follow Grice's Cooperative Principle to provide relevant and informative responses. However, human cognition draws from multiple sources of meaning, including experiential, emotional, and imaginative facets, which transcend mere language processing and are rooted in our social and developmental trajectories. Moreover, current LLMs lack physical embodiment, reducing their ability to make sense of the intricate interplay between perception, action, and cognition that shapes human understanding and expression. Ultimately, Psychomatics holds the potential to yield transformative insights into the nature of language, cognition, and intelligence, both artificial and biological. Moreover, by drawing parallels between LLMs and human cognitive processes, Psychomatics can inform the development of more robust and human-like AI systems.
- Abstract(参考訳): LLMや他の人工知能システムは、概念学習や言語習得のような人間に似た認知能力を示しているが、情報処理の仕方は、生物学的認知とは根本的に異なる。
これらの違いをより深く理解するために,認知科学,言語学,コンピュータ科学を橋渡しする多分野の枠組みである心理学を紹介した。
LLMの高レベル機能をよりよく理解し、LLMがどのようにして情報を取得し、学習し、記憶し、どのようにしてアウトプットを生成するかに焦点を当てることを目的としている。
この目標を達成するために、心理学は、理論駆動型研究から始まる比較方法論を頼りにします。
-LDMと生物学的システム間の平行線を描く。
我々の分析は、LLMが訓練データの中で複雑な言語パターンをマップし、操作する方法を示している。
さらに、LLMはGriceの協力原理に従い、関連性があり情報的な応答を提供することができる。
しかし、人間の認知は経験的、感情的、想像的な顔など、単なる言語処理を超越し、社会や発達の軌跡に根ざした複数の意味源から引き出される。
さらに、現在のLLMには身体的な具現化がなく、人間の理解と表現を形作る知覚、行動、認知の間の複雑な相互作用を理解する能力が低下している。
究極的には、心理学は言語の性質、認知、知性について、人工的および生物学的の両方に変革的な洞察を与える可能性を秘めている。
さらに、LLMと人間の認知プロセスの並列性を描くことで、心理学はより堅牢で人間に似たAIシステムの開発を通知することができる。
関連論文リスト
- Roles of LLMs in the Overall Mental Architecture [0.32634122554913997]
人間の精神的(認知的/心理学的)構造とその構成要素と構造を調べることができる。
ヒトのメンタルアーキテクチャでは、既存のLSMは暗黙のメンタルプロセスとよく対応している、と論じられている。
論文 参考訳(メタデータ) (2024-10-26T01:13:44Z) - Mind Scramble: Unveiling Large Language Model Psychology Via Typoglycemia [27.650551131885152]
大規模言語モデル(LLM)の研究は、物理世界の複雑なタスクに対処する上で有望であることを示している。
GPT-4のような強力なLDMは、人間のような認知能力を示し始めていることが研究で示唆されている。
論文 参考訳(メタデータ) (2024-10-02T15:47:25Z) - CogniDual Framework: Self-Training Large Language Models within a Dual-System Theoretical Framework for Improving Cognitive Tasks [39.43278448546028]
カーネマンの二重系理論は人間の意思決定過程を解明し、素早い直感的なシステム1と合理的なシステム2を区別する。
近年の大きな言語モデル (LLMs) は、認知タスクにおける人間レベルの習熟度に近づきやすいツールとして位置づけられている。
本研究では、自己学習を通じて、意図的な推論から直感的な応答へと進化するLLM(textbfCognidual Framework for LLMs, CFLLMs)について述べる。
論文 参考訳(メタデータ) (2024-09-05T09:33:24Z) - Large Language Models and Cognitive Science: A Comprehensive Review of Similarities, Differences, and Challenges [12.390859712280324]
本稿では,Large Language Models(LLM)と認知科学の交わりについて概観する。
我々は,LLMの認知能力を評価する手法を分析し,認知モデルとしての可能性について議論する。
我々はLLMの認知バイアスと限界を評価し,その性能向上手法を提案する。
論文 参考訳(メタデータ) (2024-09-04T02:30:12Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Lost in Translation: The Algorithmic Gap Between LMs and the Brain [8.799971499357499]
言語モデル(LM)は、様々な言語課題において印象的な性能を達成しているが、脳内の人間の言語処理との関係は未だ不明である。
本稿では、異なるレベルの分析において、LMと脳のギャップと重複について検討する。
神経科学からの洞察(空間性、モジュール性、内部状態、インタラクティブ学習など)が、より生物学的に妥当な言語モデルの開発にどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2024-07-05T17:43:16Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
大きな言語モデル(LLM)は例外的なタスク解決能力を示しており、人間に似た役割を担っている。
本稿では,LLMにおける心理学的次元を調査するための枠組みとして,心理学的識別,評価データセットのキュレーション,結果検証による評価について述べる。
本研究では,個性,価値観,感情,心の理論,モチベーション,知性の6つの心理学的側面を網羅した総合的心理測定ベンチマークを導入する。
論文 参考訳(メタデータ) (2024-06-25T16:09:08Z) - Towards Concept-Aware Large Language Models [56.48016300758356]
概念は、学習、推論、コミュニケーションなど、様々な人間の認知機能において重要な役割を果たす。
概念を形作り、推論する能力を持つ機械を授けることは、ほとんどない。
本研究では,現代における大規模言語モデル(LLM)が,人間の概念とその構造をどのように捉えているかを分析する。
論文 参考訳(メタデータ) (2023-11-03T12:19:22Z) - LLM as A Robotic Brain: Unifying Egocentric Memory and Control [77.0899374628474]
Embodied AIは、物理的または仮想的なエンボディメント(つまりロボット)を持つインテリジェントシステムの研究と開発に焦点を当てている。
メモリとコントロールは、具体化されたシステムの2つの不可欠な部分であり、通常、それぞれをモデル化するために別々のフレームワークを必要とします。
ロボット脳として大規模言語モデルを用いて,エゴセントリックな記憶と制御を統一するLLM-Brainという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-19T00:08:48Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Language Cognition and Language Computation -- Human and Machine
Language Understanding [51.56546543716759]
言語理解は認知科学とコンピュータ科学の分野で重要な科学的問題である。
これらの規律を組み合わせることで、インテリジェントな言語モデルを構築する上で、新たな洞察が得られますか?
論文 参考訳(メタデータ) (2023-01-12T02:37:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。