論文の概要: CogniDual Framework: Self-Training Large Language Models within a Dual-System Theoretical Framework for Improving Cognitive Tasks
- arxiv url: http://arxiv.org/abs/2409.03381v2
- Date: Fri, 6 Sep 2024 09:37:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 13:05:05.326376
- Title: CogniDual Framework: Self-Training Large Language Models within a Dual-System Theoretical Framework for Improving Cognitive Tasks
- Title(参考訳): Cognidual Framework:認知タスク改善のためのデュアルシステム理論フレームワーク内での大規模言語モデルの自己学習
- Authors: Yongxin Deng, Xihe Qiu, Xiaoyu Tan, Chao Qu, Jing Pan, Yuan Cheng, Yinghui Xu, Wei Chu,
- Abstract要約: カーネマンの二重系理論は人間の意思決定過程を解明し、素早い直感的なシステム1と合理的なシステム2を区別する。
近年の大きな言語モデル (LLMs) は、認知タスクにおける人間レベルの習熟度に近づきやすいツールとして位置づけられている。
本研究では、自己学習を通じて、意図的な推論から直感的な応答へと進化するLLM(textbfCognidual Framework for LLMs, CFLLMs)について述べる。
- 参考スコア(独自算出の注目度): 39.43278448546028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cognitive psychology investigates perception, attention, memory, language, problem-solving, decision-making, and reasoning. Kahneman's dual-system theory elucidates the human decision-making process, distinguishing between the rapid, intuitive System 1 and the deliberative, rational System 2. Recent advancements have positioned large language Models (LLMs) as formidable tools nearing human-level proficiency in various cognitive tasks. Nonetheless, the presence of a dual-system framework analogous to human cognition in LLMs remains unexplored. This study introduces the \textbf{CogniDual Framework for LLMs} (CFLLMs), designed to assess whether LLMs can, through self-training, evolve from deliberate deduction to intuitive responses, thereby emulating the human process of acquiring and mastering new information. Our findings reveal the cognitive mechanisms behind LLMs' response generation, enhancing our understanding of their capabilities in cognitive psychology. Practically, self-trained models can provide faster responses to certain queries, reducing computational demands during inference.
- Abstract(参考訳): 認知心理学は、知覚、注意、記憶、言語、問題解決、意思決定、推論を調査する。
カーネマンの二重系理論は人間の意思決定過程を解明し、素早い直感的なシステム1と合理的なシステム2を区別する。
近年の大きな言語モデル (LLMs) は、認知タスクにおける人間レベルの習熟度に近づきやすいツールとして位置づけられている。
それでも、LLMにおける人間の認知に類似した二重体系の枠組みの存在は未解明のままである。
本研究では, LLMの自己学習を通じて, 意図的な推論から直感的な応答へと進化し, 新たな情報の獲得と習得の過程をエミュレートすることを目的とした, CFLLM(textbf{Cognidual Framework for LLMs)を紹介した。
以上の結果から,LLMの反応生成の背景にある認知メカニズムが明らかとなり,認知心理学における認知能力の理解が深まることが示唆された。
実際、自己学習モデルは特定のクエリに対するより高速な応答を提供し、推論時の計算要求を減らすことができる。
関連論文リスト
- Roles of LLMs in the Overall Mental Architecture [0.32634122554913997]
人間の精神的(認知的/心理学的)構造とその構成要素と構造を調べることができる。
ヒトのメンタルアーキテクチャでは、既存のLSMは暗黙のメンタルプロセスとよく対応している、と論じられている。
論文 参考訳(メタデータ) (2024-10-26T01:13:44Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Large Language Models and Cognitive Science: A Comprehensive Review of Similarities, Differences, and Challenges [11.19619695546899]
本稿では,Large Language Models(LLM)と認知科学の交わりについて概観する。
我々は,LLMの認知能力を評価する手法を分析し,認知モデルとしての可能性について議論する。
我々はLLMの認知バイアスと限界を評価し,その性能向上手法を提案する。
論文 参考訳(メタデータ) (2024-09-04T02:30:12Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Psychomatics -- A Multidisciplinary Framework for Understanding Artificial Minds [0.319565400223685]
本稿では,認知科学,言語学,コンピュータ科学を橋渡しする心理学を紹介する。
LLMの高レベル機能をよりよく理解することを目的としている。
心理学は、言語の性質、認知、知性に関する変革的な洞察を与える可能性を秘めている。
論文 参考訳(メタデータ) (2024-07-23T12:53:41Z) - Predicting and Understanding Human Action Decisions: Insights from Large Language Models and Cognitive Instance-Based Learning [0.0]
大きな言語モデル(LLM)は、様々なタスクにまたがってその能力を実証している。
本稿では,LLMの推論と生成能力を利用して,2つの逐次意思決定タスクにおける人間の行動を予測する。
我々は,LLMの性能を,人間の経験的意思決定を模倣した認知的インスタンスベース学習モデルと比較した。
論文 参考訳(メタデータ) (2024-07-12T14:13:06Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
ヒューリスティック分析推論(HAR)戦略は、モデル決定のための合理化のコヒーレンスを大幅に改善する。
以上の結果から, PLM推論の一貫性と信頼性を効果的に向上できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-24T19:46:04Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
我々は脳のメタラーニングと連想機構に基づく生涯学習のパラダイムを設計する。
知識の抽出と知識の記憶という2つの側面から問題に取り組む。
提案した学習パラダイムが,異なるタスクのモデルを同じ最適に収束させることができることを理論的に分析した。
論文 参考訳(メタデータ) (2022-08-27T09:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。