論文の概要: Roles of LLMs in the Overall Mental Architecture
- arxiv url: http://arxiv.org/abs/2410.20037v1
- Date: Sat, 26 Oct 2024 01:13:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:18:43.492518
- Title: Roles of LLMs in the Overall Mental Architecture
- Title(参考訳): 総合メンタルアーキテクチャにおけるLCMの役割
- Authors: Ron Sun,
- Abstract要約: 人間の精神的(認知的/心理学的)構造とその構成要素と構造を調べることができる。
ヒトのメンタルアーキテクチャでは、既存のLSMは暗黙のメンタルプロセスとよく対応している、と論じられている。
- 参考スコア(独自算出の注目度): 0.32634122554913997
- License:
- Abstract: To better understand existing LLMs, we may examine the human mental (cognitive/psychological) architecture, and its components and structures. Based on psychological, philosophical, and cognitive science literatures, it is argued that, within the human mental architecture, existing LLMs correspond well with implicit mental processes (intuition, instinct, and so on). However, beyond such implicit processes, explicit processes (with better symbolic capabilities) are also present within the human mental architecture, judging from psychological, philosophical, and cognitive science literatures. Various theoretical and empirical issues and questions in this regard are explored. Furthermore, it is argued that existing dual-process computational cognitive architectures (models of the human cognitive/psychological architecture) provide usable frameworks for fundamentally enhancing LLMs by introducing dual processes (both implicit and explicit) and, in the meantime, can also be enhanced by LLMs. The results are synergistic combinations (in several different senses simultaneously).
- Abstract(参考訳): 既存のLLMをよりよく理解するために、人間の精神的(認知的/心理学的)アーキテクチャとその構成要素と構造を調べることができる。
心理学、哲学、認知科学の文献に基づいて、人間の精神構造において、既存のLLMは暗黙の精神過程(直観、直観など)とよく対応していると論じられている。
しかし、そのような暗黙的なプロセスを超えて、(より優れた象徴的能力を持つ)明示的なプロセスは、心理学、哲学、認知科学の文献から判断して、人間のメンタルアーキテクチャにも存在している。
この点に関して、様々な理論的、実証的な問題と疑問が考察されている。
さらに、既存の二重プロセスの計算認知アーキテクチャ(人間の認知・心理学的アーキテクチャのモデル)は、二重プロセス(暗黙的・明示的)を導入してLLMを根本的に強化するためのフレームワークを提供し、一方、LLMも拡張可能であると論じられている。
結果は(複数の異なる意味で)相乗的な組み合わせである。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - CogniDual Framework: Self-Training Large Language Models within a Dual-System Theoretical Framework for Improving Cognitive Tasks [39.43278448546028]
カーネマンの二重系理論は人間の意思決定過程を解明し、素早い直感的なシステム1と合理的なシステム2を区別する。
近年の大きな言語モデル (LLMs) は、認知タスクにおける人間レベルの習熟度に近づきやすいツールとして位置づけられている。
本研究では、自己学習を通じて、意図的な推論から直感的な応答へと進化するLLM(textbfCognidual Framework for LLMs, CFLLMs)について述べる。
論文 参考訳(メタデータ) (2024-09-05T09:33:24Z) - Large Language Models and Cognitive Science: A Comprehensive Review of Similarities, Differences, and Challenges [11.19619695546899]
本稿では,Large Language Models(LLM)と認知科学の交わりについて概観する。
我々は,LLMの認知能力を評価する手法を分析し,認知モデルとしての可能性について議論する。
我々はLLMの認知バイアスと限界を評価し,その性能向上手法を提案する。
論文 参考訳(メタデータ) (2024-09-04T02:30:12Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Psychomatics -- A Multidisciplinary Framework for Understanding Artificial Minds [0.319565400223685]
本稿では,認知科学,言語学,コンピュータ科学を橋渡しする心理学を紹介する。
LLMの高レベル機能をよりよく理解することを目的としている。
心理学は、言語の性質、認知、知性に関する変革的な洞察を与える可能性を秘めている。
論文 参考訳(メタデータ) (2024-07-23T12:53:41Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
大きな言語モデル(LLM)は例外的なタスク解決能力を示しており、人間に似た役割を担っている。
本稿では,LLMにおける心理学的次元を調査するための枠組みとして,心理学的識別,評価データセットのキュレーション,結果検証による評価について述べる。
本研究では,個性,価値観,感情,心の理論,モチベーション,知性の6つの心理学的側面を網羅した総合的心理測定ベンチマークを導入する。
論文 参考訳(メタデータ) (2024-06-25T16:09:08Z) - DeepThought: An Architecture for Autonomous Self-motivated Systems [1.6385815610837167]
大規模言語モデル(LLM)の内部アーキテクチャは、本質的な動機づけ、エージェンシー、あるいはある程度の意識を支持できない。
我々は,LLMを認知言語エージェントのアーキテクチャに統合し,エージェントや自己モチベーション,メタ認知の特徴を表現できるアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-11-14T21:20:23Z) - Synergistic Integration of Large Language Models and Cognitive
Architectures for Robust AI: An Exploratory Analysis [12.9222727028798]
本稿では、知的行動を示す人工知能エージェントの開発に使用される2つのAIサブセクタの統合について考察する:大規模言語モデル(LLM)と認知アーキテクチャ(CA)である。
我々は3つの統合的アプローチを提案し、それぞれ理論モデルに基づいて、予備的な経験的証拠によって支持される。
これらのアプローチは、LSMとCAの長所を活用すると同時に、弱点を軽減し、より堅牢なAIシステムの開発を促進することを目的としている。
論文 参考訳(メタデータ) (2023-08-18T21:42:47Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
本稿では,認知機能構築への進化的アプローチについて考察する。
本稿では,シンボル創発問題に基づくエージェントの進化を保証する認知アーキテクチャについて考察する。
論文 参考訳(メタデータ) (2022-07-02T12:41:32Z) - Understanding Deep Architectures with Reasoning Layer [60.90906477693774]
本研究では,アルゴリズムの収束,安定性,感度といった特性が,エンドツーエンドモデルの近似と一般化能力と密接に関連していることを示す。
私たちの理論は、深いアーキテクチャを推論層で設計するための有用なガイドラインを提供することができます。
論文 参考訳(メタデータ) (2020-06-24T00:26:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。