論文の概要: Knowledge-driven AI-generated data for accurate and interpretable breast ultrasound diagnoses
- arxiv url: http://arxiv.org/abs/2407.16634v1
- Date: Tue, 23 Jul 2024 16:49:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 16:36:00.368849
- Title: Knowledge-driven AI-generated data for accurate and interpretable breast ultrasound diagnoses
- Title(参考訳): 正確な乳房超音波診断のための知識駆動型AI生成データ
- Authors: Haojun Yu, Youcheng Li, Nan Zhang, Zihan Niu, Xuantong Gong, Yanwen Luo, Quanlin Wu, Wangyan Qin, Mengyuan Zhou, Jie Han, Jia Tao, Ziwei Zhao, Di Dai, Di He, Dong Wang, Binghui Tang, Ling Huo, Qingli Zhu, Yong Wang, Liwei Wang,
- Abstract要約: 本稿では, 知識駆動型生成モデルを構築し, 適切な合成データを生成するパイプラインTAILORを提案する。
生成モデルは、ソースデータとして3,749の病変を使用し、特にエラーを起こしやすいまれな症例において、数百万の乳房US画像を生成することができる。
今後の外部評価では, 同じ感度で9名の放射線技師の平均性能を33.5%向上させる。
- 参考スコア(独自算出の注目度): 29.70102468004044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven deep learning models have shown great capabilities to assist radiologists in breast ultrasound (US) diagnoses. However, their effectiveness is limited by the long-tail distribution of training data, which leads to inaccuracies in rare cases. In this study, we address a long-standing challenge of improving the diagnostic model performance on rare cases using long-tailed data. Specifically, we introduce a pipeline, TAILOR, that builds a knowledge-driven generative model to produce tailored synthetic data. The generative model, using 3,749 lesions as source data, can generate millions of breast-US images, especially for error-prone rare cases. The generated data can be further used to build a diagnostic model for accurate and interpretable diagnoses. In the prospective external evaluation, our diagnostic model outperforms the average performance of nine radiologists by 33.5% in specificity with the same sensitivity, improving their performance by providing predictions with an interpretable decision-making process. Moreover, on ductal carcinoma in situ (DCIS), our diagnostic model outperforms all radiologists by a large margin, with only 34 DCIS lesions in the source data. We believe that TAILOR can potentially be extended to various diseases and imaging modalities.
- Abstract(参考訳): データ駆動型ディープラーニングモデルは、乳房超音波(US)診断において、放射線科医を支援する優れた能力を示している。
しかし、その効果は訓練データの長期分布によって制限され、稀に不正確な結果となる。
本研究では,長期データを用いた稀な症例における診断モデルの性能向上に向けた長期的課題に対処する。
具体的には,知識駆動型生成モデルを構築するパイプラインTAILORを導入する。
生成モデルは、ソースデータとして3,749の病変を使用し、特にエラーを起こしやすいまれな症例において、数百万の乳房US画像を生成することができる。
生成されたデータは、正確かつ解釈可能な診断のための診断モデルを構築するためにさらに使用できる。
今後の外部評価では,9名の放射線技師の平均成績を33.5%の感度で上回り,解釈可能な意思決定プロセスで予測を行い,その性能を向上する。
また, 胆管癌 in situ (DCIS) では, ソースデータに34例のDCIS病変がみられた。
TAILORは様々な疾患や画像モダリティに拡張できる可能性があると考えている。
関連論文リスト
- HIST-AID: Leveraging Historical Patient Reports for Enhanced Multi-Modal Automatic Diagnosis [38.13689106933105]
HIST-AIDは,過去の報告から自動診断精度を高めるフレームワークである。
AUROCは6.56%増加し、AUPRCは9.51%向上した。
論文 参考訳(メタデータ) (2024-11-16T03:20:53Z) - A Lung Nodule Dataset with Histopathology-based Cancer Type Annotation [12.617587827105496]
本研究は,医療診断用データセットと信頼性ツールを提供することにより,このギャップを埋めることを目的としている。
330個の注記結節(結節は束縛箱とラベル付けされている)を95名の別患者から抽出し,CT画像の多彩なデータセットを収集した。
これらの有望な結果は、データセットが実現可能であり、さらにインテリジェントな補助診断を容易にすることを証明している。
論文 参考訳(メタデータ) (2024-06-26T06:39:11Z) - Large-scale Long-tailed Disease Diagnosis on Radiology Images [51.453990034460304]
RadDiagは、様々なモダリティと解剖学にわたる2Dおよび3D入力をサポートする基礎モデルである。
私たちのデータセットであるRP3D-DiagDSは、5,568の障害をカバーする195,010のスキャンで40,936の症例を含む。
論文 参考訳(メタデータ) (2023-12-26T18:20:48Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
より単純な教師付き学習信号と自己教師付き学習信号で訓練した生成的アプローチが,現在のベンチマークにおいて優れた結果が得られることを示す。
The proposed Transformer-based generative network, named DDxT, autoregressive produce a set of possible pathology,, i. DDx, and predicts the real pathology using a neural network。
論文 参考訳(メタデータ) (2023-12-02T22:57:25Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - A Novel Automated Classification and Segmentation for COVID-19 using 3D
CT Scans [5.5957919486531935]
新型コロナウイルス(COVID-19)による肺のCT画像では、地上ガラスの濁度が専門的な診断を必要とする最も一般的な発見である。
一部の研究者は、専門知識の欠如による専門的診断専門医の代替となる、関連するDLモデルを提案する。
肺病変の分類では, 新型コロナウイルス, 肺炎, 正常の3種類で94.52%の精度が得られた。
論文 参考訳(メタデータ) (2022-08-04T22:14:18Z) - Multi-confound regression adversarial network for deep learning-based
diagnosis on highly heterogenous clinical data [1.2891210250935143]
我々は、高度に異種な臨床データに基づいてディープラーニングモデルを訓練するための新しいディープラーニングアーキテクチャ、MUCRANを開発した。
われわれは、2019年以前にマサチューセッツ総合病院から収集した16,821個の臨床T1軸性脳MRIを用いてMUCRANを訓練した。
このモデルでは,新たに収集したデータに対して90%以上の精度で頑健な性能を示した。
論文 参考訳(メタデータ) (2022-05-05T18:39:09Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - Towards Reliable and Explainable AI Model for Solid Pulmonary Nodule
Diagnosis [20.510918720980467]
肺がんは世界で最も死亡率が高い。
結節検出・診断において,放射線科医を支援するコンピュータ支援診断システム(CAD)が開発された。
モデル信頼性の欠如と解釈可能性の欠如は、その大規模臨床応用の大きな障害である。
論文 参考訳(メタデータ) (2022-04-08T08:21:00Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。