論文の概要: Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference
- arxiv url: http://arxiv.org/abs/2407.17033v1
- Date: Wed, 24 Jul 2024 06:39:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 14:33:39.231222
- Title: Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference
- Title(参考訳): 深いガウス過程におけるスパース誘導点:拡散変分推論によるモデリングの強化
- Authors: Jian Xu, Delu Zeng, John Paisley,
- Abstract要約: 深いガウス過程(DGP)では、モデルの後部分布を近似するために誘導点と呼ばれるスパース積分位置が選択される。
後部近似に対する従来の変分推論アプローチは、しばしば大きなバイアスを引き起こす。
本稿では、微分微分方程式(SDE)を用いて誘導変数の後続サンプルを生成するDDVI(Denoising Diffusion Variational Inference)という方法を提案する。
- 参考スコア(独自算出の注目度): 6.37512592611305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Gaussian processes (DGPs) provide a robust paradigm for Bayesian deep learning. In DGPs, a set of sparse integration locations called inducing points are selected to approximate the posterior distribution of the model. This is done to reduce computational complexity and improve model efficiency. However, inferring the posterior distribution of inducing points is not straightforward. Traditional variational inference approaches to posterior approximation often lead to significant bias. To address this issue, we propose an alternative method called Denoising Diffusion Variational Inference (DDVI) that uses a denoising diffusion stochastic differential equation (SDE) to generate posterior samples of inducing variables. We rely on score matching methods for denoising diffusion model to approximate score functions with a neural network. Furthermore, by combining classical mathematical theory of SDEs with the minimization of KL divergence between the approximate and true processes, we propose a novel explicit variational lower bound for the marginal likelihood function of DGP. Through experiments on various datasets and comparisons with baseline methods, we empirically demonstrate the effectiveness of DDVI for posterior inference of inducing points for DGP models.
- Abstract(参考訳): ディープガウス過程 (Deep Gaussian process, DGPs) はベイズ深層学習のための堅牢なパラダイムを提供する。
DGPでは、モデルの後部分布を近似するために、誘導点と呼ばれるスパース積分位置の集合が選択される。
これは計算の複雑さを減らし、モデルの効率を改善するためである。
しかし、誘導点の後方分布を推定することは簡単ではない。
後部近似に対する従来の変分推論アプローチは、しばしば大きなバイアスを引き起こす。
この問題に対処するために,拡散確率微分方程式(SDE)を用いて誘導変数の後続サンプルを生成するDDVI(Denoising Diffusion Variational Inference)という手法を提案する。
我々は,ニューラルネットワークを用いてスコア関数を近似するために,拡散モデルの雑音化のためのスコアマッチング手法を頼りにしている。
さらに、SDEの古典的数学的理論と近似過程と真過程のKL偏差の最小化を組み合わせることで、DGPの限界確率関数に対する新しい明らかな変分下界を提案する。
各種データセットの実験とベースライン法との比較を通じて, DGPモデルにおけるインジェクションポイントの後方推論におけるDDVIの有効性を実証的に実証した。
関連論文リスト
- A Stein Gradient Descent Approach for Doubly Intractable Distributions [5.63014864822787]
そこで本研究では,2重に抽出可能な分布を推定するために,モンテカルロ・スタイン変分勾配勾配(MC-SVGD)法を提案する。
提案手法は,後続分布に匹敵する推論性能を提供しながら,既存のアルゴリズムよりもかなりの計算ゲインを達成する。
論文 参考訳(メタデータ) (2024-10-28T13:42:27Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors [11.01598521921903]
DDVIは潜在変数モデルのためのブラックボックス変分推論アルゴリズムである。
拡散に基づく変動後肢の表現型クラスを導入する。
我々はこれらの後部を、新しい規則化された証拠を低い境界で訓練する。
論文 参考訳(メタデータ) (2024-01-05T10:27:44Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Diffusion models for probabilistic programming [56.47577824219207]
拡散モデル変分推論(DMVI)は確率型プログラミング言語(PPL)における自動近似推論手法である
DMVIは実装が容易で、例えば正規化フローを用いた変分推論の欠点を伴わずに、PPLでヘイズルフリー推論が可能であり、基礎となるニューラルネットワークモデルに制約を課さない。
論文 参考訳(メタデータ) (2023-11-01T12:17:05Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Denoising Diffusion Samplers [41.796349001299156]
拡散モデルの認知は、多くの領域で最先端の結果を提供する生成モデルの一般的なクラスである。
我々は、非正規化確率密度関数から大まかにサンプリングし、それらの正規化定数を推定する類似のアイデアを探求する。
この文脈ではスコアマッチングは適用できないが、モンテカルロサンプリングのために生成的モデリングで導入された多くのアイデアを利用することができる。
論文 参考訳(メタデータ) (2023-02-27T14:37:16Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - From Denoising Diffusions to Denoising Markov Models [38.33676858989955]
デノイング拡散は、顕著な経験的性能を示す最先端の生成モデルである。
本稿では、この手法を広い範囲に一般化し、スコアマッチングのオリジナル拡張につながる統一フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-07T14:34:27Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。