論文の概要: To Know or Not To Know? Analyzing Self-Consistency of Large Language Models under Ambiguity
- arxiv url: http://arxiv.org/abs/2407.17125v3
- Date: Fri, 4 Oct 2024 14:36:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 15:23:20.840611
- Title: To Know or Not To Know? Analyzing Self-Consistency of Large Language Models under Ambiguity
- Title(参考訳): 知るか知らないか : あいまいさ下における大規模言語モデルの自己整合性の分析
- Authors: Anastasiia Sedova, Robert Litschko, Diego Frassinelli, Benjamin Roth, Barbara Plank,
- Abstract要約: 本稿では, 実体型あいまいさに着目し, 不明瞭な実体を刺激した場合の事実知識の適用において, 最先端のLCMの習熟度と一貫性を解析する。
実験の結果、LLMは正しいエンティティの読み取りを選択するのに苦労し、平均精度は85%、未特定のプロンプトで75%と低いことがわかった。
- 参考スコア(独自算出の注目度): 27.10502683001428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the major aspects contributing to the striking performance of large language models (LLMs) is the vast amount of factual knowledge accumulated during pre-training. Yet, many LLMs suffer from self-inconsistency, which raises doubts about their trustworthiness and reliability. This paper focuses on entity type ambiguity, analyzing the proficiency and consistency of state-of-the-art LLMs in applying factual knowledge when prompted with ambiguous entities. To do so, we propose an evaluation protocol that disentangles knowing from applying knowledge, and test state-of-the-art LLMs on 49 ambiguous entities. Our experiments reveal that LLMs struggle with choosing the correct entity reading, achieving an average accuracy of only 85%, and as low as 75% with underspecified prompts. The results also reveal systematic discrepancies in LLM behavior, showing that while the models may possess knowledge, they struggle to apply it consistently, exhibit biases toward preferred readings, and display self-inconsistencies. This highlights the need to address entity ambiguity in the future for more trustworthy LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)の顕著な性能に寄与する主要な側面の1つは、事前学習中に蓄積された膨大な事実知識である。
しかし、多くのLDMは自己整合性に悩まされており、信頼性と信頼性に疑問を呈している。
本稿では, 実体型あいまいさに着目し, 不明瞭な実体を刺激した場合の事実知識の適用において, 最先端のLCMの習熟度と一貫性を解析する。
そこで本研究では,49個の曖昧なエンティティ上で,知識の適用から知識を逸脱する評価プロトコルを提案し,最先端のLCMをテストした。
実験の結果, LLMは正しいエンティティの読み出しに苦慮し, 平均精度は85%, 未特定プロンプトで75%と低かった。
結果は、LLMの行動における系統的な差異を明らかにし、モデルが知識を持っている一方で、それらを一貫して適用することに苦労し、好ましい読み方に対する偏見を示し、自己矛盾を示すことを示した。
これは、より信頼できるLLMのための将来的なエンティティの曖昧さに対処する必要性を強調します。
関連論文リスト
- CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
大規模言語モデル(LLM)を評価するベンチマークであるCLAMBERを紹介する。
分類を基盤として12Kの高品質なデータを構築し, 市販のLCMの強度, 弱点, 潜在的なリスクを評価する。
本研究は, あいまいなユーザクエリの特定と明確化において, 現在のLCMの実用性に限界があることを示唆する。
論文 参考訳(メタデータ) (2024-05-20T14:34:01Z) - Towards Logically Consistent Language Models via Probabilistic Reasoning [14.317886666902822]
大規模言語モデル(LLM)は、自然言語理解および生成タスクのための有望な場所である。
LLMは、非現実的な情報を生成し、世界の信念を推論するよう促されたときに矛盾する傾向がある。
我々は,LLMが事実やルールの集合という形で,外部知識と整合性を持つように教える学習目標を導入する。
論文 参考訳(メタデータ) (2024-04-19T12:23:57Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - The Calibration Gap between Model and Human Confidence in Large Language
Models [14.539888672603743]
大規模言語モデル(LLM)は、その予測がどの程度正確であるかを正確に評価し、伝達できるという意味で、十分に校正される必要がある。
最近の研究は、内部LCMの信頼性評価の品質に焦点を当てている。
本稿では,LLMの応答における外部人間の信頼度とモデルの内部信頼度との相違について検討する。
論文 参考訳(メタデータ) (2024-01-24T22:21:04Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
オープンソースのLarge Language Models(LLM)の普及は、包括的な評価方法の緊急の必要性を強調している。
我々は不確実性定量化を統合した LLM のための新しいベンチマーク手法を提案する。
以上の結果より, 精度の高いLSMでは, 精度が低下する可能性があり, II) より大規模なLSMでは, より小型のLSMに比べて不確実性が高いこと, III) 命令ファインタニングではLCMの不確実性が高くなる傾向が示唆された。
論文 参考訳(メタデータ) (2024-01-23T14:29:17Z) - TrustLLM: Trustworthiness in Large Language Models [446.5640421311468]
本稿では,大規模言語モデル(LLM)における信頼度に関する総合的研究であるTrustLLMを紹介する。
まず、8つの異なる次元にまたがる信頼性の高いLCMの原則を提案する。
これらの原則に基づいて、真理性、安全性、公正性、堅牢性、プライバシ、機械倫理を含む6つの次元にわたるベンチマークを確立します。
論文 参考訳(メタデータ) (2024-01-10T22:07:21Z) - Examining LLMs' Uncertainty Expression Towards Questions Outside
Parametric Knowledge [35.067234242461545]
大規模言語モデル(LLM)は、適切な応答を生成するのに十分なパラメトリック知識が不足している状況において不確実性を表現する。
本研究の目的は,このような状況下でのLCMの行動の体系的調査であり,誠実さと役に立つことのトレードオフを強調することである。
論文 参考訳(メタデータ) (2023-11-16T10:02:40Z) - Are Large Language Models Reliable Judges? A Study on the Factuality
Evaluation Capabilities of LLMs [8.526956860672698]
大きな言語モデル(LLM)は、その顕著な能力のために注目を集めている。
本研究では,テキスト生成モデルにより生成された要約における事実整合性の信頼性評価としてのLCMの可能性について検討する。
論文 参考訳(メタデータ) (2023-11-01T17:42:45Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。